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The aim of this research is to predict the Remaining Useful Life (RUL) of turbine jet engines using a 
federated machine learning framework, ensuring data privacy and security while maintaining high 
predictive accuracy. Federated Learning (FL) enables multiple edge devices/nodes or servers to 
collaboratively train a shared model without sharing sensitive data, making it ideal for industries like 
aviation, where data con�dentiality is paramount. The proposed system employs Long Short-Term 
Memory (LSTM) networks, a type of recurrent neural network, to model the complex temporal 
relationships and degradation patterns in engine data. By leveraging decentralized computation, the 
framework allows models to be trained locally on each device, with learned weights aggregated at a 
central server using the Federated Averaging (FedAvg) algorithm. The study utilizes the C-MAPSS 
(Commercial Modular Aero-Propulsion System Simulation) dataset, a publicly available resource from 
NASA, which simulates engine degradation under various operational conditions. The dataset 
includes time-series data from 21 sensors and three operational settings, providing a comprehensive 
foundation for analyzing fault progression and failure modes. Computational results demonstrate the 
e�ectiveness of the proposed approach; with validation and test Root Mean Squared Error (RMSE) 
metrics range from 13.811 to 22.998 across di�erent operational scenarios. The aggregated FL model 
achieved an RMSE of 17.899, showcasing its ability to generalize across diverse conditions. By 
accurately predicting the RUL of jet engines, this approach enables optimized maintenance 
schedules, reduced downtime, and improved operational e�ciency, ultimately leading to cost 
savings and enhanced performance in the aviation industry. This research highlights the advantages 
of federated learning in handling sensitive data while achieving robust predictive performance for 
critical industrial applications.
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Integrating privacy-preserving machine learning (ML) 
techniques—particularly Federated Learning (FL)—into 
Predictive Maintenance (PM), represents a signi�cant shi� in 
how industrial operations manage maintenance and data 
security. �is approach has broad implications for operational 
e�ciency, data privacy, regulatory compliance, and 
technological innovation. In FL, data are processed locally at the 
device or server level, drastically reducing the risk of exposing 
sensitive information during transmission or in a centralized 
database [1]. �is is crucial for industries where operational 
data may include proprietary or sensitive business information. 
By minimizing data centralization, federated learning decreases 
the vulnerability of systems to massive data breaches, a growing 
concern with the increasing incidences of cyber-attacks. �is 
work investigates the application of FL to PM tasks, focusing on 
the utilization of Long Short-Term Memory (LSTM) networks 
for predicting engine faults. Our research is motivated by the 
increasing demand for e�cient PM methodologies that can 
minimize downtime and reduce operational costs in various 
industries [2]. Privacy-preserving ML enables real-time data 
analysis directly on the machines where data is generated. �is 
allows for immediate identi�cation of potential issues, 
facilitating quicker responses to prevent failures. With the 

ability to analyze data across a network of devices without 
compromising privacy, organizations can optimize 
maintenance schedules based on predictive insights, rather 
than reactive or scheduled maintenance strategies. �is not 
only extends the life of equipment but also reduces 
unnecessary downtime. FL aligns with global data protection 
regulations towards treating privacy as a fundamental human 
right and establishing robust privacy protection mechanisms 
in the era of arti�cial intelligence [3,4]. �e latest update of the 
National Arti�cial Intelligence R&D Strategic Plan by the 
White House in 2023 underscores the signi�cance of FL in 
addressing data privacy and security concerns. 1�is plan 
elaborates on long-term investment strategies in responsible 
AI research, emphasizing the need for advancements in 
privacy-preserving data sharing and the ongoing challenges 
within FL. �e General Data Protection Regulation (GDPR)2 
in Europe also emphasizes data minimization, privacy by 
design, and the principle of processing data close to its source. 
Since FL does not require data to leave its source, it simpli�es 
compliance with laws that restrict cross-border data transfers, 
making it an attractive option for multinational corporations. 
In FL only essential model-related information is transmitted. 
�erefore, FL can signi�cantly reduce the costs associated 

with data transmission. In addition, by processing data locally 
and not requiring a central repository for vast amounts of raw 
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning, 
we re�ne our models’ accuracy, utilizing FL to distribute the 
computational load and enhance data privacy. �e results 
section provides an in-depth analysis of the models’ 
performance. Federated learning allows for the development of 
highly tailored models that learn from diverse data sources 
without compromising sensitive information. �is capability 
can drive innovation in PM technologies. Di�erent entities, 
even competitors, can collaborate to improve predictive models 
without sharing sensitive data, accelerating industry-wide 
advancements in maintenance strategies. Managing FL across 
many devices and locations introduces complexity, especially 
when coordinating updates and maintaining consistent model 
performance across diverse environments. Implementing an FL 
system requires sophisticated infrastructure and a shi� in 
traditional data management strategies, which might be 
challenging for some organizations. �is study encompasses a 
process validation section, where we underscore our 
collaboration with industry experts to ensure that our research 
objectives align with practical applications and that our �ndings 
remain relevant. �e use of privacy-preserving ML and FL in 
PM strengthens data security and enhances operational 
e�ciencies and compliance with regulatory norms. �ese 
technologies are setting new standards for how industries 
approach maintenance tasks while safeguarding critical data. As 
adoption grows, they could rede�ne best practices for asset 
management across various sectors, promising a future where 
PM is both more e�ective and inherently secure. In summary, 
this study delves into the application of federated learning for 
PM, presenting a structured approach to model development 
employing LSTM networks. Our �ndings aim to contribute to 
the ongoing discussion on the potential of FL in industrial 
applications, particularly in enhancing PM strategies to achieve 
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies: 
reactive and proactive. Both are widely used due to their 
di�erent advantages and disadvantages. Reactive maintenance 
describes the process of waiting for the life cycle of a part of an 
airplane subsystem to completely run out before repairing or 
replacing the faulty components [5]. Proactive maintenance 
describes the process of scheduling regular maintenance to 
repair/replace components before they become faulty [6]. �e 
advantage of reactive maintenance is that we can get 100% usage 
out of our parts, but the obvious disadvantage is that there is a 
high chance of component failure happening during �ights. 
�is can work for something non-critical like overhead cockpit 
lights, which would not force a �ight to be grounded if they 
failed in �ight. On the other hand, something like a 
High-Pressure Compressor (HPC) failure in �ight could prove 
disastrous. In these scenarios, it is better to perform proactive 
maintenance, where the disadvantage is that we lose some usage 
from our components, but we limit the number of in-�ight 
failures. In more recent years, with the advancements of ML, 
PM has become more popular as a third approach where we can 

use machine learning to schedule our maintenance for high-risk 
systems and still get close to 100% usage with a low-error model 
[7,8]. �ere are two main problems with this approach: small 
�eets with small sample sizes to train their PM models and large 
�eets unwilling to share their plentiful data with competitors 
due to privacy concerns. �e work done in this study applies to 
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE) 
researchers conducted engine degradation simulations using 
the Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and 
readily accessible on the NASA website, which can serve as a 
valuable resource for studying and analyzing engine 
degradation behaviors in various operational scenarios. �e 
data was converted to .csv and is stored on our GitHub 
repository.

 �e C-MAPSS dataset is an operational behavior dataset 
from di�erent engines. It o�ers a detailed look into the normal 
operational conditions of engines, including the presence of 
noise. Each data entry in the dataset contains 26 columns, 
encompassing information such as unit number, time cycles, 
three operational settings, and 21 sensor measurements (see 
Appendix A for details). �ese data snapshots, taken during 
individual operational cycles, provide valuable insights into the 
engine’s behavior. Table 1 provides detailed information about 
each node. Sensor measurements are observed to be 
contaminated with noise, which can potentially introduce 
inaccuracies and inconsistencies in the data analysis process 
[10].

 �e dataset is structured into four training and four testing 
datasets, each with varying numbers of trajectories, conditions, 
and fault modes. �e training sets are designed to showcase 
examples of faults that grow in magnitude until system failure 
occurs, providing valuable learning opportunities for predictive 
maintenance and fault detection. �e testing sets may end 
before system failure, allowing for the evaluation of predictive 
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify 
correlations between variables in a dataset, making them 
particularly useful for analyzing relationships among sensor 
measurements [11]. By plotting a heat map of the correlation 
matrix, patterns of correlation (both positive and negative) 
between pairs of variables can be easily visualized through color 
gradients. In the plot below, the lightest (white/tan) and darkest 
(black) colors indicate the highest linear correlation among 

variables. �e orange/red color indicates there is little to no 
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the 
strongest relationships consisting of SM2, SM3, SM4, SM7, 
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are 
correlated with almost all sensor measurement except SM6, 
SM9, and SM14. Regarding the trend, it seems like RUL has a 
similar correlation trend with SM7, SM12, SM20, and SM21, 
which can imply that RUL is mainly determined by SM7, SM12, 
SM20, and SM21. �e other interesting part is that OS1 and OS2 
do not have any relationship with the sensor measurements. In 
FD002, the RUL has no relationship with any of the sensor 
measurements. SM15 has the strongest relationship with every 
other sensor measurement, but it seems like it has the opposite 
trend compared to others. Every operational setting and sensor 
measurements are correlated with each other except for the 
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and 
OS2 are a�ected by most of the sensor measurements. In 
FD003, the heatmaps show similar trends and relationships 
among the operational setting and sensor measurements as in 
FD001. For FD004, the heatmaps show similar trends and 
relationships among the operational setting and sensor 
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor 
measurements from column variables 6 to 26, with unclear 
descriptions. �e operational settings are Mach Number (0 to 
0.90), altitude (sea level to 40,000 feet), and sea-level 
temperature (-60°F to 103°F). Upon further research, the labels 
were identi�ed for the sensor measurements with an 
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist 
of all data up until each failure, and testing sets have the cut-o� 
of some data before the failure. For example, in the training set 
for FD001, all rows with unit = 1 are the data from the �rst 

failure. �e last row of unit 1 has cycles = 192, which means the 
engine failed a�er 192 operational cycles. For the testing set, the 
last row of unit = 1 has cycle = 31, which is not when the failure 
happened. �e separate RUL �les contain the number of cycles 
until failure from the last sample for each test unit. In the case of 
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data 
privacy and security. It is particularly bene�cial in scenarios 
where data con�dentiality is crucial in a highly sensitive 
environment. �is approach was chosen because it helps 
prevent data leakage and reverse engineering of the data. 
However, the setup can lead to biased subsets of data at each 
node, as the training data is not shareable. To address this, a 
federated learning algorithm is employed. Initially, the server 
sends instructions to each node to train a local model. �ese 
local node models train on their respective data, and a�er a 
training round, they only transmit their updated weights to the 
central server. �e central server then aggregates these weights. 

 �ere are several aggregation methods available in 
Federated Learning (FL), each designed to address speci�c 

challenges and requirements, such as Federated 
Average (Fed Avg), FedProx, and personalized FL, 
etc. FedAvg is one of the most widely used methods, 
functioning as a generalized version of local-SGD, 
which performs a weighted average of local model 
parameters (weights) a�er a certain number of 
optimization steps are performed by each model 
[12]. �e weights for the average are determined as 
seen �t by the implementation. �e combined 
model is then transmitted back to the nodes, which 
use the updated model parameters as a starting 
point for another round of training [13]. �is 
process continues for multiple rounds until the 
global model converges. FedProx is a generalization 
of FedAvg and is primarily designed to address 
challenges associated with Independent and 
Identically Distributed (non-IID) data, which 
means data distributions vary signi�cantly across 
devices. �is method introduces a proximal term to 
the local optimization objective, which restricts the 

local updates to remain close to the global model. �is 
modi�cation improves stability and convergence in 
heterogeneous environments, making it particularly e�ective for 
applications with diverse data sources [14]. Another method is 
Personalized Federated Learning (FL), an alternative aggregation 
method that aims to train a model that depends on individual 
user preferences or behaviors [15]. Unlike FedAvg and FedProx, 
which aim to train a single global model, personalized FL allows 
for the creation of customized models for each user or device. 
�is is achieved by incorporating user-speci�c parameters or 
�ne-tuning the global model locally to better adapt to individual 
data distributions. Personalized FL is especially useful in 
scenarios where user data exhibits signi�cant variability, such as 
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is 
FedAvg, where the weight is the number of data samples 

available for training at each node. FedAvg is a well-established 
theoretical foundation approach and simpler to implement 
than the other approaches, which may require a more complex 
mechanism for tailoring models to individual users. 

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially 
the work done in, we decided that the best technique to model 
RUL is to use deep learning with LSTM neural network [8]. 
LSTM is a type of Recurrent Neural Network (RNN) that is 
suitable for modeling events that happen in sequence. LSTM 
avoids the common vanishing gradient problem by using gates 
to store or forget information as needed [16]. �is allows LSTM 
to learn long-term dependencies more e�ectively while having 
the ability to forget learned relationships that no longer bene�t 
the goal of minimizing loss. Each LSTM cell is composed of 
three gates implemented as sigmoid functions. Data xt comes 
into the cell, and becomes part of gt the candidate cell which 
also has previous memory information. �e ft (forget) gate 
decides what information should be forgotten; the it (input) 
gate decides what information should be stored, and the ot (output) gate decides what information should be the output 
from the cell. Hidden state St-1 and cell state Lt-1 contain the 
short and long-term memory states from the previous cells 
respectively. Figure 2 demonstrates the internal workings of a 
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning 
of our neural networks. �is module allows nearly limitless 
customization of model tuning with skilled use of Python. See 
the documentation of the Keras Tuner Python module for more 
information on the usage. Table 2 below shows the exact 
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine 
learning, there are three main loss functions: Mean Squared 
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2). 
Let N be the number of prediction samples, ȳ be the mean of the 
true values, yi and ŷⁱ be the true and predicted values at sample 
i, respectively. �ese metrics are de�ned as: 

              (1)

       (2)

       (3)

 MSE is a very punishing loss because it is non-linear with 
respect to error size. For example, an error of 10 is 100 times 
worse than an error of 1 because of the squaring. Additionally, 
the use of the square changes the units of the error to squared 
target units which may be di�cult to understand. Because of 
this, Root-MSE is a popular choice: RMSE=√MSE. can be good 
because it is recorded in the same units as the target variable 
(engine cycles in our case); however, it is linearly punishing and 
treats an error of qβ as being q times worse than an error of β 
which may not be good in certain cases such as jet engine 
failure. R2 is generally not chosen as a loss as it is di�cult to 
understand it as a loss function and easy to manipulate by 
adding more variables to our input and “curating” the validation 
data to have low variance. However, given two models with the 
same input variables evaluated on the same data, R2 can be a 
good “tie-breaker” for similar RMSE or MAE. For the reasons 
laid out above, we selected to use RMSE for the training and 
validation loss of our models, but we reported MAE as our 
second metric.

Model architecture
Derived from the work done in, we used a neural network 
architecture in Figure 3 that leverages the recurrent capabilities 
and robustness of LSTM cells with the approximation abilities 
of fully connected layers [8]. �e dropout layers and recurrent 
dropout in the LSTM are used to prevent over-�tting and 
improve generalization on unseen data. �e Gaussian noise 
layers are also generalization-aiding layers, as well as the 
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal 
performance in machine learning models, and it involves three 
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset 
have noise included. �e noise was purposefully added when 
the data was being generated [9]. Noise can be bad for machine 
learning models since the models may over-�t the noise of the 
training data, which has no real in�uence on the underlying 
phenomena. Filtering is a way to reduce the noise in the signals 
and improve the model generalization. We chose to use a 
median �lter, which is a sliding window �lter that suppresses 
noise and outliers, as illustrated in Figure 4 for Engine 11 of 
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided 
the signals based on each unit within each node. �en we tried 
kernel sizes k=3,5,7,9,11,…, Mk where Mk =      , si being the 
number of samples for unit i. �e best kernel for each unit was 
selected as the one that maximizes the linear correlation 
between the target (RUL) and the signal being analyzed. We 
then took the weighted geometric average of all the kernels and 
set it as the �nal kernel size to use. �e weight varied as the 
correlation and the number of samples for the unit. �e best was 
selected depending on the �nal model performance. 
 

�e second technique used is a simple “pruning” technique, 
which randomly removes some samples from the ends of the 
sequences of some of the time series in the training set. �is 
method is similar in execution to neural network pruning, 
though the goal is to make the data more representative as 
opposed to reducing complexity [19,20]. �is was done to 
mimic the test set time series, which did not run until failure. 
�e general idea was to prevent the model from over-�tting to a 
time series that starts at full health and ends at critical failure. 
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in 
vastly di�erent scales, such as data taken from di�erent sensors 
from di�erent jet engines in di�erent operating conditions [21]. 
�e di�ering scales and variances can cause the neural network 
to unfairly bias certain dimensions in the data due to 
undesirable reasons. We elected to use the popular z-score 
normalization technique, which takes all dimensions in the data 
and normalizes them to have approximately zero mean and 

standard deviation of 1. �is creates an even playing �eld when 
it comes to assigning neural network parameters during 
optimization. To use this technique, we simply turn each 
observation in each sample into a z-score. Let X be the set of all 
observations for a certain feature in one of our agents, we can 
�nd the z-score for the ith observation xi using:

   from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that 
deal with the degradation of parts, we decided to use some 
feature engineering techniques to add dimensions and new 
predictors to our data. �e �rst technique is a simple 
accumulation technique where we take the cumulative sum of 
certain signals throughout the degradation process. �e second 
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input 
space can add helpful dimensions to our dataset [22]. We took a 
similar approach by taking a simple, single-dimension, 
single-time-step signed change calculation to some of our 
features and added these as new features. �e single time step is 
because we do not know how long the “cycle” time dimension is. 
Given that most engines in the dataset fail within 200 cycles, it 
is safe to say each cycle is a relatively large time step, such as 
hours or even an entire �ight. �us, having too large of a 
window may not capture meaningful change. �e following 
snippet of code in Listing 2 demonstrates how the rate of change 
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3 
outline the optimal con�guration for the Long 
Short-Term Memory (LSTM) network used in 
predicting the Remaining Useful Life (RUL) of jet 
engines within a federated learning framework. �e 
model employs 4 LSTM layers and 4 dense layers, 
each with 64 units per layer, which balances model 
complexity and computational e�ciency. A batch 
size 32 was selected, enabling e�cient training 
while maintaining su�cient gradient updates. To 
prevent over�tting, a dropout rate of 0.1 and a 
recurrent dropout rate of 0.2 were applied, ensuring 
robust generalization to unseen data. �e learning 
rate was set to 0.001, a standard choice for achieving 
stable convergence during training. Additionally, 
Gaussian noise with a variance of 0.01 was 
introduced to improve the model's generalization 
by simulating slight variations in the input data. 
�ese hyperparameters were �ne-tuned through 
extensive experimentation using KerasTuner, 
ensuring optimal performance for the predictive 
maintenance task while preserving data privacy in a 
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several 
studies aggregated by Asif et al. and compared the results with 
our federated averaged model results [1]. We used statistical 
tests to compare these models. First, we ran two-tailed, equal 
means tests for all of them without selecting an α value 
beforehand. All the p-values were extremely low. �us, all of the 
equal means hypotheses were rejected, suggesting that our 
models either outperformed or underperformed against each 
study.

 We then performed greater-than-or-equal-to and 
less-than-or-equal-to one-tailed tests against each of the studies 
and recorded the results. Table 5 below summarizes the studies 
for which our model was statistically better on average. �e 
study number refers to the order in which the study appears in 
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set 
performance for our agents and our aggregated model. We also 

have graphical demonstrations in Figure 5 of how our model 
predicts the degradation of the di�erent faults over time, 
considering the di�erent conditions simulated within the 
di�erent agents.

We also generated 95% con�dence intervals for the true mean 
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average, 
the FL approach either maintained or improved the model 
performance. While the test error across the individual agents 
showed signi�cant variance, the aggregated model 
demonstrated the ability to generalize and balance the error 
overall. �e variance in individual agent performance can be 
explained by the operating conditions detailed in Table 1. 
FD002 and FD004 are simulated with variance in six operating 
conditions (altitude, pressure, air speed, etc.), while FD001 and 
FD003 are simulated at sea level with no variance. �us, FD002 
and FD004 performed 1.25-1.6 times worse than the other 
agents. �e statistical analysis provided further insights into the 
e�ectiveness of the FL model. By conducting two-tailed equal 
means tests and greater-than-or-equal-to and less-than-or- 
equal-to one-tailed tests, we were able to compare our model’s 
performance against other studies. �e consistently low 
p-values and the rejection of null hypotheses in several cases 
suggest that our FL-based model either outperforms or is 
comparable to existing methods in predictive maintenance. �is 
statistical rigor con�rms that the federated approach not only 
preserves data privacy but also maintains, if not improves, 
model accuracy.

Conclusions 
�is study explores the application of FL in PM tasks, focusing 
on engine fault prediction using deep learning with LSTM cells. 
�e primary motivation behind this work was to address the 
challenges of maintaining data privacy while allowing 
collaboration between entities with data silos. Our main 
hypothesis was that implementing the FL framework would 
either maintain or improve the model performance on average 
when compared to the centralized learning approach. �e 
implementation of FL o�ers several key advantages in the 

context of predictive maintenance. Firstly, it preserves data 
privacy by ensuring that sensitive data remains localized on the 
devices where it is generated. �is is particularly important in 
industries like aerospace, where operational data can include 
proprietary and sensitive information. By minimizing the need 
for data centralization, FL reduces the risk of data breaches 
while allowing collaboration between entities that would 
otherwise not be able to collaborate. However, the study also 
highlights some challenges associated with the implementation 
of FL in predictive maintenance. Managing the FL process 
across multiple devices introduces complexity, particularly in 
coordinating updates and maintaining consistent model 
performance across diverse environments. Additionally, the 
federated approach can lead to biased subsets of data at each 
node, which may a�ect the generalization of the global model. 
Despite these challenges, the ability to collaborate across 
di�erent entities without sharing raw data opens new 
possibilities for improving the maintenance models 
industry-wide. �is collaborative approach can accelerate 
advancements in predictive maintenance technologies, 
bene�ting not just individual companies but the entire industry.
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Integrating privacy-preserving machine learning (ML) 
techniques—particularly Federated Learning (FL)—into 
Predictive Maintenance (PM), represents a signi�cant shi� in 
how industrial operations manage maintenance and data 
security. �is approach has broad implications for operational 
e�ciency, data privacy, regulatory compliance, and 
technological innovation. In FL, data are processed locally at the 
device or server level, drastically reducing the risk of exposing 
sensitive information during transmission or in a centralized 
database [1]. �is is crucial for industries where operational 
data may include proprietary or sensitive business information. 
By minimizing data centralization, federated learning decreases 
the vulnerability of systems to massive data breaches, a growing 
concern with the increasing incidences of cyber-attacks. �is 
work investigates the application of FL to PM tasks, focusing on 
the utilization of Long Short-Term Memory (LSTM) networks 
for predicting engine faults. Our research is motivated by the 
increasing demand for e�cient PM methodologies that can 
minimize downtime and reduce operational costs in various 
industries [2]. Privacy-preserving ML enables real-time data 
analysis directly on the machines where data is generated. �is 
allows for immediate identi�cation of potential issues, 
facilitating quicker responses to prevent failures. With the 

ability to analyze data across a network of devices without 
compromising privacy, organizations can optimize 
maintenance schedules based on predictive insights, rather 
than reactive or scheduled maintenance strategies. �is not 
only extends the life of equipment but also reduces 
unnecessary downtime. FL aligns with global data protection 
regulations towards treating privacy as a fundamental human 
right and establishing robust privacy protection mechanisms 
in the era of arti�cial intelligence [3,4]. �e latest update of the 
National Arti�cial Intelligence R&D Strategic Plan by the 
White House in 2023 underscores the signi�cance of FL in 
addressing data privacy and security concerns. 1�is plan 
elaborates on long-term investment strategies in responsible 
AI research, emphasizing the need for advancements in 
privacy-preserving data sharing and the ongoing challenges 
within FL. �e General Data Protection Regulation (GDPR)2 
in Europe also emphasizes data minimization, privacy by 
design, and the principle of processing data close to its source. 
Since FL does not require data to leave its source, it simpli�es 
compliance with laws that restrict cross-border data transfers, 
making it an attractive option for multinational corporations. 
In FL only essential model-related information is transmitted. 
�erefore, FL can signi�cantly reduce the costs associated 

with data transmission. In addition, by processing data locally 
and not requiring a central repository for vast amounts of raw 
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning, 
we re�ne our models’ accuracy, utilizing FL to distribute the 
computational load and enhance data privacy. �e results 
section provides an in-depth analysis of the models’ 
performance. Federated learning allows for the development of 
highly tailored models that learn from diverse data sources 
without compromising sensitive information. �is capability 
can drive innovation in PM technologies. Di�erent entities, 
even competitors, can collaborate to improve predictive models 
without sharing sensitive data, accelerating industry-wide 
advancements in maintenance strategies. Managing FL across 
many devices and locations introduces complexity, especially 
when coordinating updates and maintaining consistent model 
performance across diverse environments. Implementing an FL 
system requires sophisticated infrastructure and a shi� in 
traditional data management strategies, which might be 
challenging for some organizations. �is study encompasses a 
process validation section, where we underscore our 
collaboration with industry experts to ensure that our research 
objectives align with practical applications and that our �ndings 
remain relevant. �e use of privacy-preserving ML and FL in 
PM strengthens data security and enhances operational 
e�ciencies and compliance with regulatory norms. �ese 
technologies are setting new standards for how industries 
approach maintenance tasks while safeguarding critical data. As 
adoption grows, they could rede�ne best practices for asset 
management across various sectors, promising a future where 
PM is both more e�ective and inherently secure. In summary, 
this study delves into the application of federated learning for 
PM, presenting a structured approach to model development 
employing LSTM networks. Our �ndings aim to contribute to 
the ongoing discussion on the potential of FL in industrial 
applications, particularly in enhancing PM strategies to achieve 
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies: 
reactive and proactive. Both are widely used due to their 
di�erent advantages and disadvantages. Reactive maintenance 
describes the process of waiting for the life cycle of a part of an 
airplane subsystem to completely run out before repairing or 
replacing the faulty components [5]. Proactive maintenance 
describes the process of scheduling regular maintenance to 
repair/replace components before they become faulty [6]. �e 
advantage of reactive maintenance is that we can get 100% usage 
out of our parts, but the obvious disadvantage is that there is a 
high chance of component failure happening during �ights. 
�is can work for something non-critical like overhead cockpit 
lights, which would not force a �ight to be grounded if they 
failed in �ight. On the other hand, something like a 
High-Pressure Compressor (HPC) failure in �ight could prove 
disastrous. In these scenarios, it is better to perform proactive 
maintenance, where the disadvantage is that we lose some usage 
from our components, but we limit the number of in-�ight 
failures. In more recent years, with the advancements of ML, 
PM has become more popular as a third approach where we can 

use machine learning to schedule our maintenance for high-risk 
systems and still get close to 100% usage with a low-error model 
[7,8]. �ere are two main problems with this approach: small 
�eets with small sample sizes to train their PM models and large 
�eets unwilling to share their plentiful data with competitors 
due to privacy concerns. �e work done in this study applies to 
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE) 
researchers conducted engine degradation simulations using 
the Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and 
readily accessible on the NASA website, which can serve as a 
valuable resource for studying and analyzing engine 
degradation behaviors in various operational scenarios. �e 
data was converted to .csv and is stored on our GitHub 
repository.

 �e C-MAPSS dataset is an operational behavior dataset 
from di�erent engines. It o�ers a detailed look into the normal 
operational conditions of engines, including the presence of 
noise. Each data entry in the dataset contains 26 columns, 
encompassing information such as unit number, time cycles, 
three operational settings, and 21 sensor measurements (see 
Appendix A for details). �ese data snapshots, taken during 
individual operational cycles, provide valuable insights into the 
engine’s behavior. Table 1 provides detailed information about 
each node. Sensor measurements are observed to be 
contaminated with noise, which can potentially introduce 
inaccuracies and inconsistencies in the data analysis process 
[10].

 �e dataset is structured into four training and four testing 
datasets, each with varying numbers of trajectories, conditions, 
and fault modes. �e training sets are designed to showcase 
examples of faults that grow in magnitude until system failure 
occurs, providing valuable learning opportunities for predictive 
maintenance and fault detection. �e testing sets may end 
before system failure, allowing for the evaluation of predictive 
models under di�erent scenarios.

Agent 
Name

Training 
Set Size

Testing 
Set Size

Simulation 
Condition

Faults

FD001 100 100 1 HPC

FD002 260 259 6 HPC

FD003 100 100 1 Fan/HPC

FD004 248 249 6 Fan/HPC

Table 1. Trajectories and Conditions for each node

Heatmaps
Heatmaps are powerful visualization tools used to identify 
correlations between variables in a dataset, making them 
particularly useful for analyzing relationships among sensor 
measurements [11]. By plotting a heat map of the correlation 
matrix, patterns of correlation (both positive and negative) 
between pairs of variables can be easily visualized through color 
gradients. In the plot below, the lightest (white/tan) and darkest 
(black) colors indicate the highest linear correlation among 

variables. �e orange/red color indicates there is little to no 
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the 
strongest relationships consisting of SM2, SM3, SM4, SM7, 
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are 
correlated with almost all sensor measurement except SM6, 
SM9, and SM14. Regarding the trend, it seems like RUL has a 
similar correlation trend with SM7, SM12, SM20, and SM21, 
which can imply that RUL is mainly determined by SM7, SM12, 
SM20, and SM21. �e other interesting part is that OS1 and OS2 
do not have any relationship with the sensor measurements. In 
FD002, the RUL has no relationship with any of the sensor 
measurements. SM15 has the strongest relationship with every 
other sensor measurement, but it seems like it has the opposite 
trend compared to others. Every operational setting and sensor 
measurements are correlated with each other except for the 
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and 
OS2 are a�ected by most of the sensor measurements. In 
FD003, the heatmaps show similar trends and relationships 
among the operational setting and sensor measurements as in 
FD001. For FD004, the heatmaps show similar trends and 
relationships among the operational setting and sensor 
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor 
measurements from column variables 6 to 26, with unclear 
descriptions. �e operational settings are Mach Number (0 to 
0.90), altitude (sea level to 40,000 feet), and sea-level 
temperature (-60°F to 103°F). Upon further research, the labels 
were identi�ed for the sensor measurements with an 
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist 
of all data up until each failure, and testing sets have the cut-o� 
of some data before the failure. For example, in the training set 
for FD001, all rows with unit = 1 are the data from the �rst 

failure. �e last row of unit 1 has cycles = 192, which means the 
engine failed a�er 192 operational cycles. For the testing set, the 
last row of unit = 1 has cycle = 31, which is not when the failure 
happened. �e separate RUL �les contain the number of cycles 
until failure from the last sample for each test unit. In the case of 
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data 
privacy and security. It is particularly bene�cial in scenarios 
where data con�dentiality is crucial in a highly sensitive 
environment. �is approach was chosen because it helps 
prevent data leakage and reverse engineering of the data. 
However, the setup can lead to biased subsets of data at each 
node, as the training data is not shareable. To address this, a 
federated learning algorithm is employed. Initially, the server 
sends instructions to each node to train a local model. �ese 
local node models train on their respective data, and a�er a 
training round, they only transmit their updated weights to the 
central server. �e central server then aggregates these weights. 

 �ere are several aggregation methods available in 
Federated Learning (FL), each designed to address speci�c 

challenges and requirements, such as Federated 
Average (Fed Avg), FedProx, and personalized FL, 
etc. FedAvg is one of the most widely used methods, 
functioning as a generalized version of local-SGD, 
which performs a weighted average of local model 
parameters (weights) a�er a certain number of 
optimization steps are performed by each model 
[12]. �e weights for the average are determined as 
seen �t by the implementation. �e combined 
model is then transmitted back to the nodes, which 
use the updated model parameters as a starting 
point for another round of training [13]. �is 
process continues for multiple rounds until the 
global model converges. FedProx is a generalization 
of FedAvg and is primarily designed to address 
challenges associated with Independent and 
Identically Distributed (non-IID) data, which 
means data distributions vary signi�cantly across 
devices. �is method introduces a proximal term to 
the local optimization objective, which restricts the 

local updates to remain close to the global model. �is 
modi�cation improves stability and convergence in 
heterogeneous environments, making it particularly e�ective for 
applications with diverse data sources [14]. Another method is 
Personalized Federated Learning (FL), an alternative aggregation 
method that aims to train a model that depends on individual 
user preferences or behaviors [15]. Unlike FedAvg and FedProx, 
which aim to train a single global model, personalized FL allows 
for the creation of customized models for each user or device. 
�is is achieved by incorporating user-speci�c parameters or 
�ne-tuning the global model locally to better adapt to individual 
data distributions. Personalized FL is especially useful in 
scenarios where user data exhibits signi�cant variability, such as 
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is 
FedAvg, where the weight is the number of data samples 

available for training at each node. FedAvg is a well-established 
theoretical foundation approach and simpler to implement 
than the other approaches, which may require a more complex 
mechanism for tailoring models to individual users. 

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially 
the work done in, we decided that the best technique to model 
RUL is to use deep learning with LSTM neural network [8]. 
LSTM is a type of Recurrent Neural Network (RNN) that is 
suitable for modeling events that happen in sequence. LSTM 
avoids the common vanishing gradient problem by using gates 
to store or forget information as needed [16]. �is allows LSTM 
to learn long-term dependencies more e�ectively while having 
the ability to forget learned relationships that no longer bene�t 
the goal of minimizing loss. Each LSTM cell is composed of 
three gates implemented as sigmoid functions. Data xt comes 
into the cell, and becomes part of gt the candidate cell which 
also has previous memory information. �e ft (forget) gate 
decides what information should be forgotten; the it (input) 
gate decides what information should be stored, and the ot (output) gate decides what information should be the output 
from the cell. Hidden state St-1 and cell state Lt-1 contain the 
short and long-term memory states from the previous cells 
respectively. Figure 2 demonstrates the internal workings of a 
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning 
of our neural networks. �is module allows nearly limitless 
customization of model tuning with skilled use of Python. See 
the documentation of the Keras Tuner Python module for more 
information on the usage. Table 2 below shows the exact 
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine 
learning, there are three main loss functions: Mean Squared 
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2). 
Let N be the number of prediction samples, ȳ be the mean of the 
true values, yi and ŷⁱ be the true and predicted values at sample 
i, respectively. �ese metrics are de�ned as: 

              (1)

       (2)

       (3)

 MSE is a very punishing loss because it is non-linear with 
respect to error size. For example, an error of 10 is 100 times 
worse than an error of 1 because of the squaring. Additionally, 
the use of the square changes the units of the error to squared 
target units which may be di�cult to understand. Because of 
this, Root-MSE is a popular choice: RMSE=√MSE. can be good 
because it is recorded in the same units as the target variable 
(engine cycles in our case); however, it is linearly punishing and 
treats an error of qβ as being q times worse than an error of β 
which may not be good in certain cases such as jet engine 
failure. R2 is generally not chosen as a loss as it is di�cult to 
understand it as a loss function and easy to manipulate by 
adding more variables to our input and “curating” the validation 
data to have low variance. However, given two models with the 
same input variables evaluated on the same data, R2 can be a 
good “tie-breaker” for similar RMSE or MAE. For the reasons 
laid out above, we selected to use RMSE for the training and 
validation loss of our models, but we reported MAE as our 
second metric.

Model architecture
Derived from the work done in, we used a neural network 
architecture in Figure 3 that leverages the recurrent capabilities 
and robustness of LSTM cells with the approximation abilities 
of fully connected layers [8]. �e dropout layers and recurrent 
dropout in the LSTM are used to prevent over-�tting and 
improve generalization on unseen data. �e Gaussian noise 
layers are also generalization-aiding layers, as well as the 
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal 
performance in machine learning models, and it involves three 
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset 
have noise included. �e noise was purposefully added when 
the data was being generated [9]. Noise can be bad for machine 
learning models since the models may over-�t the noise of the 
training data, which has no real in�uence on the underlying 
phenomena. Filtering is a way to reduce the noise in the signals 
and improve the model generalization. We chose to use a 
median �lter, which is a sliding window �lter that suppresses 
noise and outliers, as illustrated in Figure 4 for Engine 11 of 
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided 
the signals based on each unit within each node. �en we tried 
kernel sizes k=3,5,7,9,11,…, Mk where Mk =      , si being the 
number of samples for unit i. �e best kernel for each unit was 
selected as the one that maximizes the linear correlation 
between the target (RUL) and the signal being analyzed. We 
then took the weighted geometric average of all the kernels and 
set it as the �nal kernel size to use. �e weight varied as the 
correlation and the number of samples for the unit. �e best was 
selected depending on the �nal model performance. 
 

�e second technique used is a simple “pruning” technique, 
which randomly removes some samples from the ends of the 
sequences of some of the time series in the training set. �is 
method is similar in execution to neural network pruning, 
though the goal is to make the data more representative as 
opposed to reducing complexity [19,20]. �is was done to 
mimic the test set time series, which did not run until failure. 
�e general idea was to prevent the model from over-�tting to a 
time series that starts at full health and ends at critical failure. 
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in 
vastly di�erent scales, such as data taken from di�erent sensors 
from di�erent jet engines in di�erent operating conditions [21]. 
�e di�ering scales and variances can cause the neural network 
to unfairly bias certain dimensions in the data due to 
undesirable reasons. We elected to use the popular z-score 
normalization technique, which takes all dimensions in the data 
and normalizes them to have approximately zero mean and 

standard deviation of 1. �is creates an even playing �eld when 
it comes to assigning neural network parameters during 
optimization. To use this technique, we simply turn each 
observation in each sample into a z-score. Let X be the set of all 
observations for a certain feature in one of our agents, we can 
�nd the z-score for the ith observation xi using:

   from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that 
deal with the degradation of parts, we decided to use some 
feature engineering techniques to add dimensions and new 
predictors to our data. �e �rst technique is a simple 
accumulation technique where we take the cumulative sum of 
certain signals throughout the degradation process. �e second 
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input 
space can add helpful dimensions to our dataset [22]. We took a 
similar approach by taking a simple, single-dimension, 
single-time-step signed change calculation to some of our 
features and added these as new features. �e single time step is 
because we do not know how long the “cycle” time dimension is. 
Given that most engines in the dataset fail within 200 cycles, it 
is safe to say each cycle is a relatively large time step, such as 
hours or even an entire �ight. �us, having too large of a 
window may not capture meaningful change. �e following 
snippet of code in Listing 2 demonstrates how the rate of change 
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3 
outline the optimal con�guration for the Long 
Short-Term Memory (LSTM) network used in 
predicting the Remaining Useful Life (RUL) of jet 
engines within a federated learning framework. �e 
model employs 4 LSTM layers and 4 dense layers, 
each with 64 units per layer, which balances model 
complexity and computational e�ciency. A batch 
size 32 was selected, enabling e�cient training 
while maintaining su�cient gradient updates. To 
prevent over�tting, a dropout rate of 0.1 and a 
recurrent dropout rate of 0.2 were applied, ensuring 
robust generalization to unseen data. �e learning 
rate was set to 0.001, a standard choice for achieving 
stable convergence during training. Additionally, 
Gaussian noise with a variance of 0.01 was 
introduced to improve the model's generalization 
by simulating slight variations in the input data. 
�ese hyperparameters were �ne-tuned through 
extensive experimentation using KerasTuner, 
ensuring optimal performance for the predictive 
maintenance task while preserving data privacy in a 
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several 
studies aggregated by Asif et al. and compared the results with 
our federated averaged model results [1]. We used statistical 
tests to compare these models. First, we ran two-tailed, equal 
means tests for all of them without selecting an α value 
beforehand. All the p-values were extremely low. �us, all of the 
equal means hypotheses were rejected, suggesting that our 
models either outperformed or underperformed against each 
study.

 We then performed greater-than-or-equal-to and 
less-than-or-equal-to one-tailed tests against each of the studies 
and recorded the results. Table 5 below summarizes the studies 
for which our model was statistically better on average. �e 
study number refers to the order in which the study appears in 
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set 
performance for our agents and our aggregated model. We also 

have graphical demonstrations in Figure 5 of how our model 
predicts the degradation of the di�erent faults over time, 
considering the di�erent conditions simulated within the 
di�erent agents.

We also generated 95% con�dence intervals for the true mean 
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average, 
the FL approach either maintained or improved the model 
performance. While the test error across the individual agents 
showed signi�cant variance, the aggregated model 
demonstrated the ability to generalize and balance the error 
overall. �e variance in individual agent performance can be 
explained by the operating conditions detailed in Table 1. 
FD002 and FD004 are simulated with variance in six operating 
conditions (altitude, pressure, air speed, etc.), while FD001 and 
FD003 are simulated at sea level with no variance. �us, FD002 
and FD004 performed 1.25-1.6 times worse than the other 
agents. �e statistical analysis provided further insights into the 
e�ectiveness of the FL model. By conducting two-tailed equal 
means tests and greater-than-or-equal-to and less-than-or- 
equal-to one-tailed tests, we were able to compare our model’s 
performance against other studies. �e consistently low 
p-values and the rejection of null hypotheses in several cases 
suggest that our FL-based model either outperforms or is 
comparable to existing methods in predictive maintenance. �is 
statistical rigor con�rms that the federated approach not only 
preserves data privacy but also maintains, if not improves, 
model accuracy.

Conclusions 
�is study explores the application of FL in PM tasks, focusing 
on engine fault prediction using deep learning with LSTM cells. 
�e primary motivation behind this work was to address the 
challenges of maintaining data privacy while allowing 
collaboration between entities with data silos. Our main 
hypothesis was that implementing the FL framework would 
either maintain or improve the model performance on average 
when compared to the centralized learning approach. �e 
implementation of FL o�ers several key advantages in the 

context of predictive maintenance. Firstly, it preserves data 
privacy by ensuring that sensitive data remains localized on the 
devices where it is generated. �is is particularly important in 
industries like aerospace, where operational data can include 
proprietary and sensitive information. By minimizing the need 
for data centralization, FL reduces the risk of data breaches 
while allowing collaboration between entities that would 
otherwise not be able to collaborate. However, the study also 
highlights some challenges associated with the implementation 
of FL in predictive maintenance. Managing the FL process 
across multiple devices introduces complexity, particularly in 
coordinating updates and maintaining consistent model 
performance across diverse environments. Additionally, the 
federated approach can lead to biased subsets of data at each 
node, which may a�ect the generalization of the global model. 
Despite these challenges, the ability to collaborate across 
di�erent entities without sharing raw data opens new 
possibilities for improving the maintenance models 
industry-wide. �is collaborative approach can accelerate 
advancements in predictive maintenance technologies, 
bene�ting not just individual companies but the entire industry.
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Integrating privacy-preserving machine learning (ML) 
techniques—particularly Federated Learning (FL)—into 
Predictive Maintenance (PM), represents a signi�cant shi� in 
how industrial operations manage maintenance and data 
security. �is approach has broad implications for operational 
e�ciency, data privacy, regulatory compliance, and 
technological innovation. In FL, data are processed locally at the 
device or server level, drastically reducing the risk of exposing 
sensitive information during transmission or in a centralized 
database [1]. �is is crucial for industries where operational 
data may include proprietary or sensitive business information. 
By minimizing data centralization, federated learning decreases 
the vulnerability of systems to massive data breaches, a growing 
concern with the increasing incidences of cyber-attacks. �is 
work investigates the application of FL to PM tasks, focusing on 
the utilization of Long Short-Term Memory (LSTM) networks 
for predicting engine faults. Our research is motivated by the 
increasing demand for e�cient PM methodologies that can 
minimize downtime and reduce operational costs in various 
industries [2]. Privacy-preserving ML enables real-time data 
analysis directly on the machines where data is generated. �is 
allows for immediate identi�cation of potential issues, 
facilitating quicker responses to prevent failures. With the 

ability to analyze data across a network of devices without 
compromising privacy, organizations can optimize 
maintenance schedules based on predictive insights, rather 
than reactive or scheduled maintenance strategies. �is not 
only extends the life of equipment but also reduces 
unnecessary downtime. FL aligns with global data protection 
regulations towards treating privacy as a fundamental human 
right and establishing robust privacy protection mechanisms 
in the era of arti�cial intelligence [3,4]. �e latest update of the 
National Arti�cial Intelligence R&D Strategic Plan by the 
White House in 2023 underscores the signi�cance of FL in 
addressing data privacy and security concerns. 1�is plan 
elaborates on long-term investment strategies in responsible 
AI research, emphasizing the need for advancements in 
privacy-preserving data sharing and the ongoing challenges 
within FL. �e General Data Protection Regulation (GDPR)2 
in Europe also emphasizes data minimization, privacy by 
design, and the principle of processing data close to its source. 
Since FL does not require data to leave its source, it simpli�es 
compliance with laws that restrict cross-border data transfers, 
making it an attractive option for multinational corporations. 
In FL only essential model-related information is transmitted. 
�erefore, FL can signi�cantly reduce the costs associated 

with data transmission. In addition, by processing data locally 
and not requiring a central repository for vast amounts of raw 
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning, 
we re�ne our models’ accuracy, utilizing FL to distribute the 
computational load and enhance data privacy. �e results 
section provides an in-depth analysis of the models’ 
performance. Federated learning allows for the development of 
highly tailored models that learn from diverse data sources 
without compromising sensitive information. �is capability 
can drive innovation in PM technologies. Di�erent entities, 
even competitors, can collaborate to improve predictive models 
without sharing sensitive data, accelerating industry-wide 
advancements in maintenance strategies. Managing FL across 
many devices and locations introduces complexity, especially 
when coordinating updates and maintaining consistent model 
performance across diverse environments. Implementing an FL 
system requires sophisticated infrastructure and a shi� in 
traditional data management strategies, which might be 
challenging for some organizations. �is study encompasses a 
process validation section, where we underscore our 
collaboration with industry experts to ensure that our research 
objectives align with practical applications and that our �ndings 
remain relevant. �e use of privacy-preserving ML and FL in 
PM strengthens data security and enhances operational 
e�ciencies and compliance with regulatory norms. �ese 
technologies are setting new standards for how industries 
approach maintenance tasks while safeguarding critical data. As 
adoption grows, they could rede�ne best practices for asset 
management across various sectors, promising a future where 
PM is both more e�ective and inherently secure. In summary, 
this study delves into the application of federated learning for 
PM, presenting a structured approach to model development 
employing LSTM networks. Our �ndings aim to contribute to 
the ongoing discussion on the potential of FL in industrial 
applications, particularly in enhancing PM strategies to achieve 
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies: 
reactive and proactive. Both are widely used due to their 
di�erent advantages and disadvantages. Reactive maintenance 
describes the process of waiting for the life cycle of a part of an 
airplane subsystem to completely run out before repairing or 
replacing the faulty components [5]. Proactive maintenance 
describes the process of scheduling regular maintenance to 
repair/replace components before they become faulty [6]. �e 
advantage of reactive maintenance is that we can get 100% usage 
out of our parts, but the obvious disadvantage is that there is a 
high chance of component failure happening during �ights. 
�is can work for something non-critical like overhead cockpit 
lights, which would not force a �ight to be grounded if they 
failed in �ight. On the other hand, something like a 
High-Pressure Compressor (HPC) failure in �ight could prove 
disastrous. In these scenarios, it is better to perform proactive 
maintenance, where the disadvantage is that we lose some usage 
from our components, but we limit the number of in-�ight 
failures. In more recent years, with the advancements of ML, 
PM has become more popular as a third approach where we can 

use machine learning to schedule our maintenance for high-risk 
systems and still get close to 100% usage with a low-error model 
[7,8]. �ere are two main problems with this approach: small 
�eets with small sample sizes to train their PM models and large 
�eets unwilling to share their plentiful data with competitors 
due to privacy concerns. �e work done in this study applies to 
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE) 
researchers conducted engine degradation simulations using 
the Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and 
readily accessible on the NASA website, which can serve as a 
valuable resource for studying and analyzing engine 
degradation behaviors in various operational scenarios. �e 
data was converted to .csv and is stored on our GitHub 
repository.

 �e C-MAPSS dataset is an operational behavior dataset 
from di�erent engines. It o�ers a detailed look into the normal 
operational conditions of engines, including the presence of 
noise. Each data entry in the dataset contains 26 columns, 
encompassing information such as unit number, time cycles, 
three operational settings, and 21 sensor measurements (see 
Appendix A for details). �ese data snapshots, taken during 
individual operational cycles, provide valuable insights into the 
engine’s behavior. Table 1 provides detailed information about 
each node. Sensor measurements are observed to be 
contaminated with noise, which can potentially introduce 
inaccuracies and inconsistencies in the data analysis process 
[10].

 �e dataset is structured into four training and four testing 
datasets, each with varying numbers of trajectories, conditions, 
and fault modes. �e training sets are designed to showcase 
examples of faults that grow in magnitude until system failure 
occurs, providing valuable learning opportunities for predictive 
maintenance and fault detection. �e testing sets may end 
before system failure, allowing for the evaluation of predictive 
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify 
correlations between variables in a dataset, making them 
particularly useful for analyzing relationships among sensor 
measurements [11]. By plotting a heat map of the correlation 
matrix, patterns of correlation (both positive and negative) 
between pairs of variables can be easily visualized through color 
gradients. In the plot below, the lightest (white/tan) and darkest 
(black) colors indicate the highest linear correlation among 

variables. �e orange/red color indicates there is little to no 
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the 
strongest relationships consisting of SM2, SM3, SM4, SM7, 
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are 
correlated with almost all sensor measurement except SM6, 
SM9, and SM14. Regarding the trend, it seems like RUL has a 
similar correlation trend with SM7, SM12, SM20, and SM21, 
which can imply that RUL is mainly determined by SM7, SM12, 
SM20, and SM21. �e other interesting part is that OS1 and OS2 
do not have any relationship with the sensor measurements. In 
FD002, the RUL has no relationship with any of the sensor 
measurements. SM15 has the strongest relationship with every 
other sensor measurement, but it seems like it has the opposite 
trend compared to others. Every operational setting and sensor 
measurements are correlated with each other except for the 
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and 
OS2 are a�ected by most of the sensor measurements. In 
FD003, the heatmaps show similar trends and relationships 
among the operational setting and sensor measurements as in 
FD001. For FD004, the heatmaps show similar trends and 
relationships among the operational setting and sensor 
measurements as FD002.

Figure 1. Heatmaps of (a) FD001, (b) FD002, (c), FD003, and (d) 
FD004 training datasets

Data preparation
�e original data contains three operational settings and sensor 
measurements from column variables 6 to 26, with unclear 
descriptions. �e operational settings are Mach Number (0 to 
0.90), altitude (sea level to 40,000 feet), and sea-level 
temperature (-60°F to 103°F). Upon further research, the labels 
were identi�ed for the sensor measurements with an 
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist 
of all data up until each failure, and testing sets have the cut-o� 
of some data before the failure. For example, in the training set 
for FD001, all rows with unit = 1 are the data from the �rst 

failure. �e last row of unit 1 has cycles = 192, which means the 
engine failed a�er 192 operational cycles. For the testing set, the 
last row of unit = 1 has cycle = 31, which is not when the failure 
happened. �e separate RUL �les contain the number of cycles 
until failure from the last sample for each test unit. In the case of 
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data 
privacy and security. It is particularly bene�cial in scenarios 
where data con�dentiality is crucial in a highly sensitive 
environment. �is approach was chosen because it helps 
prevent data leakage and reverse engineering of the data. 
However, the setup can lead to biased subsets of data at each 
node, as the training data is not shareable. To address this, a 
federated learning algorithm is employed. Initially, the server 
sends instructions to each node to train a local model. �ese 
local node models train on their respective data, and a�er a 
training round, they only transmit their updated weights to the 
central server. �e central server then aggregates these weights. 

 �ere are several aggregation methods available in 
Federated Learning (FL), each designed to address speci�c 

challenges and requirements, such as Federated 
Average (Fed Avg), FedProx, and personalized FL, 
etc. FedAvg is one of the most widely used methods, 
functioning as a generalized version of local-SGD, 
which performs a weighted average of local model 
parameters (weights) a�er a certain number of 
optimization steps are performed by each model 
[12]. �e weights for the average are determined as 
seen �t by the implementation. �e combined 
model is then transmitted back to the nodes, which 
use the updated model parameters as a starting 
point for another round of training [13]. �is 
process continues for multiple rounds until the 
global model converges. FedProx is a generalization 
of FedAvg and is primarily designed to address 
challenges associated with Independent and 
Identically Distributed (non-IID) data, which 
means data distributions vary signi�cantly across 
devices. �is method introduces a proximal term to 
the local optimization objective, which restricts the 

local updates to remain close to the global model. �is 
modi�cation improves stability and convergence in 
heterogeneous environments, making it particularly e�ective for 
applications with diverse data sources [14]. Another method is 
Personalized Federated Learning (FL), an alternative aggregation 
method that aims to train a model that depends on individual 
user preferences or behaviors [15]. Unlike FedAvg and FedProx, 
which aim to train a single global model, personalized FL allows 
for the creation of customized models for each user or device. 
�is is achieved by incorporating user-speci�c parameters or 
�ne-tuning the global model locally to better adapt to individual 
data distributions. Personalized FL is especially useful in 
scenarios where user data exhibits signi�cant variability, such as 
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is 
FedAvg, where the weight is the number of data samples 

available for training at each node. FedAvg is a well-established 
theoretical foundation approach and simpler to implement 
than the other approaches, which may require a more complex 
mechanism for tailoring models to individual users. 

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially 
the work done in, we decided that the best technique to model 
RUL is to use deep learning with LSTM neural network [8]. 
LSTM is a type of Recurrent Neural Network (RNN) that is 
suitable for modeling events that happen in sequence. LSTM 
avoids the common vanishing gradient problem by using gates 
to store or forget information as needed [16]. �is allows LSTM 
to learn long-term dependencies more e�ectively while having 
the ability to forget learned relationships that no longer bene�t 
the goal of minimizing loss. Each LSTM cell is composed of 
three gates implemented as sigmoid functions. Data xt comes 
into the cell, and becomes part of gt the candidate cell which 
also has previous memory information. �e ft (forget) gate 
decides what information should be forgotten; the it (input) 
gate decides what information should be stored, and the ot (output) gate decides what information should be the output 
from the cell. Hidden state St-1 and cell state Lt-1 contain the 
short and long-term memory states from the previous cells 
respectively. Figure 2 demonstrates the internal workings of a 
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning 
of our neural networks. �is module allows nearly limitless 
customization of model tuning with skilled use of Python. See 
the documentation of the Keras Tuner Python module for more 
information on the usage. Table 2 below shows the exact 
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine 
learning, there are three main loss functions: Mean Squared 
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2). 
Let N be the number of prediction samples, ȳ be the mean of the 
true values, yi and ŷⁱ be the true and predicted values at sample 
i, respectively. �ese metrics are de�ned as: 

              (1)

       (2)

       (3)

 MSE is a very punishing loss because it is non-linear with 
respect to error size. For example, an error of 10 is 100 times 
worse than an error of 1 because of the squaring. Additionally, 
the use of the square changes the units of the error to squared 
target units which may be di�cult to understand. Because of 
this, Root-MSE is a popular choice: RMSE=√MSE. can be good 
because it is recorded in the same units as the target variable 
(engine cycles in our case); however, it is linearly punishing and 
treats an error of qβ as being q times worse than an error of β 
which may not be good in certain cases such as jet engine 
failure. R2 is generally not chosen as a loss as it is di�cult to 
understand it as a loss function and easy to manipulate by 
adding more variables to our input and “curating” the validation 
data to have low variance. However, given two models with the 
same input variables evaluated on the same data, R2 can be a 
good “tie-breaker” for similar RMSE or MAE. For the reasons 
laid out above, we selected to use RMSE for the training and 
validation loss of our models, but we reported MAE as our 
second metric.

Model architecture
Derived from the work done in, we used a neural network 
architecture in Figure 3 that leverages the recurrent capabilities 
and robustness of LSTM cells with the approximation abilities 
of fully connected layers [8]. �e dropout layers and recurrent 
dropout in the LSTM are used to prevent over-�tting and 
improve generalization on unseen data. �e Gaussian noise 
layers are also generalization-aiding layers, as well as the 
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal 
performance in machine learning models, and it involves three 
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset 
have noise included. �e noise was purposefully added when 
the data was being generated [9]. Noise can be bad for machine 
learning models since the models may over-�t the noise of the 
training data, which has no real in�uence on the underlying 
phenomena. Filtering is a way to reduce the noise in the signals 
and improve the model generalization. We chose to use a 
median �lter, which is a sliding window �lter that suppresses 
noise and outliers, as illustrated in Figure 4 for Engine 11 of 
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided 
the signals based on each unit within each node. �en we tried 
kernel sizes k=3,5,7,9,11,…, Mk where Mk =      , si being the 
number of samples for unit i. �e best kernel for each unit was 
selected as the one that maximizes the linear correlation 
between the target (RUL) and the signal being analyzed. We 
then took the weighted geometric average of all the kernels and 
set it as the �nal kernel size to use. �e weight varied as the 
correlation and the number of samples for the unit. �e best was 
selected depending on the �nal model performance. 
 

�e second technique used is a simple “pruning” technique, 
which randomly removes some samples from the ends of the 
sequences of some of the time series in the training set. �is 
method is similar in execution to neural network pruning, 
though the goal is to make the data more representative as 
opposed to reducing complexity [19,20]. �is was done to 
mimic the test set time series, which did not run until failure. 
�e general idea was to prevent the model from over-�tting to a 
time series that starts at full health and ends at critical failure. 
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in 
vastly di�erent scales, such as data taken from di�erent sensors 
from di�erent jet engines in di�erent operating conditions [21]. 
�e di�ering scales and variances can cause the neural network 
to unfairly bias certain dimensions in the data due to 
undesirable reasons. We elected to use the popular z-score 
normalization technique, which takes all dimensions in the data 
and normalizes them to have approximately zero mean and 

standard deviation of 1. �is creates an even playing �eld when 
it comes to assigning neural network parameters during 
optimization. To use this technique, we simply turn each 
observation in each sample into a z-score. Let X be the set of all 
observations for a certain feature in one of our agents, we can 
�nd the z-score for the ith observation xi using:

   from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that 
deal with the degradation of parts, we decided to use some 
feature engineering techniques to add dimensions and new 
predictors to our data. �e �rst technique is a simple 
accumulation technique where we take the cumulative sum of 
certain signals throughout the degradation process. �e second 
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input 
space can add helpful dimensions to our dataset [22]. We took a 
similar approach by taking a simple, single-dimension, 
single-time-step signed change calculation to some of our 
features and added these as new features. �e single time step is 
because we do not know how long the “cycle” time dimension is. 
Given that most engines in the dataset fail within 200 cycles, it 
is safe to say each cycle is a relatively large time step, such as 
hours or even an entire �ight. �us, having too large of a 
window may not capture meaningful change. �e following 
snippet of code in Listing 2 demonstrates how the rate of change 
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3 
outline the optimal con�guration for the Long 
Short-Term Memory (LSTM) network used in 
predicting the Remaining Useful Life (RUL) of jet 
engines within a federated learning framework. �e 
model employs 4 LSTM layers and 4 dense layers, 
each with 64 units per layer, which balances model 
complexity and computational e�ciency. A batch 
size 32 was selected, enabling e�cient training 
while maintaining su�cient gradient updates. To 
prevent over�tting, a dropout rate of 0.1 and a 
recurrent dropout rate of 0.2 were applied, ensuring 
robust generalization to unseen data. �e learning 
rate was set to 0.001, a standard choice for achieving 
stable convergence during training. Additionally, 
Gaussian noise with a variance of 0.01 was 
introduced to improve the model's generalization 
by simulating slight variations in the input data. 
�ese hyperparameters were �ne-tuned through 
extensive experimentation using KerasTuner, 
ensuring optimal performance for the predictive 
maintenance task while preserving data privacy in a 
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several 
studies aggregated by Asif et al. and compared the results with 
our federated averaged model results [1]. We used statistical 
tests to compare these models. First, we ran two-tailed, equal 
means tests for all of them without selecting an α value 
beforehand. All the p-values were extremely low. �us, all of the 
equal means hypotheses were rejected, suggesting that our 
models either outperformed or underperformed against each 
study.

 We then performed greater-than-or-equal-to and 
less-than-or-equal-to one-tailed tests against each of the studies 
and recorded the results. Table 5 below summarizes the studies 
for which our model was statistically better on average. �e 
study number refers to the order in which the study appears in 
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set 
performance for our agents and our aggregated model. We also 

have graphical demonstrations in Figure 5 of how our model 
predicts the degradation of the di�erent faults over time, 
considering the di�erent conditions simulated within the 
di�erent agents.

We also generated 95% con�dence intervals for the true mean 
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average, 
the FL approach either maintained or improved the model 
performance. While the test error across the individual agents 
showed signi�cant variance, the aggregated model 
demonstrated the ability to generalize and balance the error 
overall. �e variance in individual agent performance can be 
explained by the operating conditions detailed in Table 1. 
FD002 and FD004 are simulated with variance in six operating 
conditions (altitude, pressure, air speed, etc.), while FD001 and 
FD003 are simulated at sea level with no variance. �us, FD002 
and FD004 performed 1.25-1.6 times worse than the other 
agents. �e statistical analysis provided further insights into the 
e�ectiveness of the FL model. By conducting two-tailed equal 
means tests and greater-than-or-equal-to and less-than-or- 
equal-to one-tailed tests, we were able to compare our model’s 
performance against other studies. �e consistently low 
p-values and the rejection of null hypotheses in several cases 
suggest that our FL-based model either outperforms or is 
comparable to existing methods in predictive maintenance. �is 
statistical rigor con�rms that the federated approach not only 
preserves data privacy but also maintains, if not improves, 
model accuracy.

Conclusions 
�is study explores the application of FL in PM tasks, focusing 
on engine fault prediction using deep learning with LSTM cells. 
�e primary motivation behind this work was to address the 
challenges of maintaining data privacy while allowing 
collaboration between entities with data silos. Our main 
hypothesis was that implementing the FL framework would 
either maintain or improve the model performance on average 
when compared to the centralized learning approach. �e 
implementation of FL o�ers several key advantages in the 

context of predictive maintenance. Firstly, it preserves data 
privacy by ensuring that sensitive data remains localized on the 
devices where it is generated. �is is particularly important in 
industries like aerospace, where operational data can include 
proprietary and sensitive information. By minimizing the need 
for data centralization, FL reduces the risk of data breaches 
while allowing collaboration between entities that would 
otherwise not be able to collaborate. However, the study also 
highlights some challenges associated with the implementation 
of FL in predictive maintenance. Managing the FL process 
across multiple devices introduces complexity, particularly in 
coordinating updates and maintaining consistent model 
performance across diverse environments. Additionally, the 
federated approach can lead to biased subsets of data at each 
node, which may a�ect the generalization of the global model. 
Despite these challenges, the ability to collaborate across 
di�erent entities without sharing raw data opens new 
possibilities for improving the maintenance models 
industry-wide. �is collaborative approach can accelerate 
advancements in predictive maintenance technologies, 
bene�ting not just individual companies but the entire industry.
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Integrating privacy-preserving machine learning (ML) 
techniques—particularly Federated Learning (FL)—into 
Predictive Maintenance (PM), represents a signi�cant shi� in 
how industrial operations manage maintenance and data 
security. �is approach has broad implications for operational 
e�ciency, data privacy, regulatory compliance, and 
technological innovation. In FL, data are processed locally at the 
device or server level, drastically reducing the risk of exposing 
sensitive information during transmission or in a centralized 
database [1]. �is is crucial for industries where operational 
data may include proprietary or sensitive business information. 
By minimizing data centralization, federated learning decreases 
the vulnerability of systems to massive data breaches, a growing 
concern with the increasing incidences of cyber-attacks. �is 
work investigates the application of FL to PM tasks, focusing on 
the utilization of Long Short-Term Memory (LSTM) networks 
for predicting engine faults. Our research is motivated by the 
increasing demand for e�cient PM methodologies that can 
minimize downtime and reduce operational costs in various 
industries [2]. Privacy-preserving ML enables real-time data 
analysis directly on the machines where data is generated. �is 
allows for immediate identi�cation of potential issues, 
facilitating quicker responses to prevent failures. With the 

ability to analyze data across a network of devices without 
compromising privacy, organizations can optimize 
maintenance schedules based on predictive insights, rather 
than reactive or scheduled maintenance strategies. �is not 
only extends the life of equipment but also reduces 
unnecessary downtime. FL aligns with global data protection 
regulations towards treating privacy as a fundamental human 
right and establishing robust privacy protection mechanisms 
in the era of arti�cial intelligence [3,4]. �e latest update of the 
National Arti�cial Intelligence R&D Strategic Plan by the 
White House in 2023 underscores the signi�cance of FL in 
addressing data privacy and security concerns. 1�is plan 
elaborates on long-term investment strategies in responsible 
AI research, emphasizing the need for advancements in 
privacy-preserving data sharing and the ongoing challenges 
within FL. �e General Data Protection Regulation (GDPR)2 
in Europe also emphasizes data minimization, privacy by 
design, and the principle of processing data close to its source. 
Since FL does not require data to leave its source, it simpli�es 
compliance with laws that restrict cross-border data transfers, 
making it an attractive option for multinational corporations. 
In FL only essential model-related information is transmitted. 
�erefore, FL can signi�cantly reduce the costs associated 

with data transmission. In addition, by processing data locally 
and not requiring a central repository for vast amounts of raw 
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning, 
we re�ne our models’ accuracy, utilizing FL to distribute the 
computational load and enhance data privacy. �e results 
section provides an in-depth analysis of the models’ 
performance. Federated learning allows for the development of 
highly tailored models that learn from diverse data sources 
without compromising sensitive information. �is capability 
can drive innovation in PM technologies. Di�erent entities, 
even competitors, can collaborate to improve predictive models 
without sharing sensitive data, accelerating industry-wide 
advancements in maintenance strategies. Managing FL across 
many devices and locations introduces complexity, especially 
when coordinating updates and maintaining consistent model 
performance across diverse environments. Implementing an FL 
system requires sophisticated infrastructure and a shi� in 
traditional data management strategies, which might be 
challenging for some organizations. �is study encompasses a 
process validation section, where we underscore our 
collaboration with industry experts to ensure that our research 
objectives align with practical applications and that our �ndings 
remain relevant. �e use of privacy-preserving ML and FL in 
PM strengthens data security and enhances operational 
e�ciencies and compliance with regulatory norms. �ese 
technologies are setting new standards for how industries 
approach maintenance tasks while safeguarding critical data. As 
adoption grows, they could rede�ne best practices for asset 
management across various sectors, promising a future where 
PM is both more e�ective and inherently secure. In summary, 
this study delves into the application of federated learning for 
PM, presenting a structured approach to model development 
employing LSTM networks. Our �ndings aim to contribute to 
the ongoing discussion on the potential of FL in industrial 
applications, particularly in enhancing PM strategies to achieve 
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies: 
reactive and proactive. Both are widely used due to their 
di�erent advantages and disadvantages. Reactive maintenance 
describes the process of waiting for the life cycle of a part of an 
airplane subsystem to completely run out before repairing or 
replacing the faulty components [5]. Proactive maintenance 
describes the process of scheduling regular maintenance to 
repair/replace components before they become faulty [6]. �e 
advantage of reactive maintenance is that we can get 100% usage 
out of our parts, but the obvious disadvantage is that there is a 
high chance of component failure happening during �ights. 
�is can work for something non-critical like overhead cockpit 
lights, which would not force a �ight to be grounded if they 
failed in �ight. On the other hand, something like a 
High-Pressure Compressor (HPC) failure in �ight could prove 
disastrous. In these scenarios, it is better to perform proactive 
maintenance, where the disadvantage is that we lose some usage 
from our components, but we limit the number of in-�ight 
failures. In more recent years, with the advancements of ML, 
PM has become more popular as a third approach where we can 

use machine learning to schedule our maintenance for high-risk 
systems and still get close to 100% usage with a low-error model 
[7,8]. �ere are two main problems with this approach: small 
�eets with small sample sizes to train their PM models and large 
�eets unwilling to share their plentiful data with competitors 
due to privacy concerns. �e work done in this study applies to 
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE) 
researchers conducted engine degradation simulations using 
the Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and 
readily accessible on the NASA website, which can serve as a 
valuable resource for studying and analyzing engine 
degradation behaviors in various operational scenarios. �e 
data was converted to .csv and is stored on our GitHub 
repository.

 �e C-MAPSS dataset is an operational behavior dataset 
from di�erent engines. It o�ers a detailed look into the normal 
operational conditions of engines, including the presence of 
noise. Each data entry in the dataset contains 26 columns, 
encompassing information such as unit number, time cycles, 
three operational settings, and 21 sensor measurements (see 
Appendix A for details). �ese data snapshots, taken during 
individual operational cycles, provide valuable insights into the 
engine’s behavior. Table 1 provides detailed information about 
each node. Sensor measurements are observed to be 
contaminated with noise, which can potentially introduce 
inaccuracies and inconsistencies in the data analysis process 
[10].

 �e dataset is structured into four training and four testing 
datasets, each with varying numbers of trajectories, conditions, 
and fault modes. �e training sets are designed to showcase 
examples of faults that grow in magnitude until system failure 
occurs, providing valuable learning opportunities for predictive 
maintenance and fault detection. �e testing sets may end 
before system failure, allowing for the evaluation of predictive 
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify 
correlations between variables in a dataset, making them 
particularly useful for analyzing relationships among sensor 
measurements [11]. By plotting a heat map of the correlation 
matrix, patterns of correlation (both positive and negative) 
between pairs of variables can be easily visualized through color 
gradients. In the plot below, the lightest (white/tan) and darkest 
(black) colors indicate the highest linear correlation among 

variables. �e orange/red color indicates there is little to no 
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the 
strongest relationships consisting of SM2, SM3, SM4, SM7, 
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are 
correlated with almost all sensor measurement except SM6, 
SM9, and SM14. Regarding the trend, it seems like RUL has a 
similar correlation trend with SM7, SM12, SM20, and SM21, 
which can imply that RUL is mainly determined by SM7, SM12, 
SM20, and SM21. �e other interesting part is that OS1 and OS2 
do not have any relationship with the sensor measurements. In 
FD002, the RUL has no relationship with any of the sensor 
measurements. SM15 has the strongest relationship with every 
other sensor measurement, but it seems like it has the opposite 
trend compared to others. Every operational setting and sensor 
measurements are correlated with each other except for the 
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and 
OS2 are a�ected by most of the sensor measurements. In 
FD003, the heatmaps show similar trends and relationships 
among the operational setting and sensor measurements as in 
FD001. For FD004, the heatmaps show similar trends and 
relationships among the operational setting and sensor 
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor 
measurements from column variables 6 to 26, with unclear 
descriptions. �e operational settings are Mach Number (0 to 
0.90), altitude (sea level to 40,000 feet), and sea-level 
temperature (-60°F to 103°F). Upon further research, the labels 
were identi�ed for the sensor measurements with an 
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist 
of all data up until each failure, and testing sets have the cut-o� 
of some data before the failure. For example, in the training set 
for FD001, all rows with unit = 1 are the data from the �rst 

failure. �e last row of unit 1 has cycles = 192, which means the 
engine failed a�er 192 operational cycles. For the testing set, the 
last row of unit = 1 has cycle = 31, which is not when the failure 
happened. �e separate RUL �les contain the number of cycles 
until failure from the last sample for each test unit. In the case of 
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data 
privacy and security. It is particularly bene�cial in scenarios 
where data con�dentiality is crucial in a highly sensitive 
environment. �is approach was chosen because it helps 
prevent data leakage and reverse engineering of the data. 
However, the setup can lead to biased subsets of data at each 
node, as the training data is not shareable. To address this, a 
federated learning algorithm is employed. Initially, the server 
sends instructions to each node to train a local model. �ese 
local node models train on their respective data, and a�er a 
training round, they only transmit their updated weights to the 
central server. �e central server then aggregates these weights. 

 �ere are several aggregation methods available in 
Federated Learning (FL), each designed to address speci�c 

challenges and requirements, such as Federated 
Average (Fed Avg), FedProx, and personalized FL, 
etc. FedAvg is one of the most widely used methods, 
functioning as a generalized version of local-SGD, 
which performs a weighted average of local model 
parameters (weights) a�er a certain number of 
optimization steps are performed by each model 
[12]. �e weights for the average are determined as 
seen �t by the implementation. �e combined 
model is then transmitted back to the nodes, which 
use the updated model parameters as a starting 
point for another round of training [13]. �is 
process continues for multiple rounds until the 
global model converges. FedProx is a generalization 
of FedAvg and is primarily designed to address 
challenges associated with Independent and 
Identically Distributed (non-IID) data, which 
means data distributions vary signi�cantly across 
devices. �is method introduces a proximal term to 
the local optimization objective, which restricts the 

local updates to remain close to the global model. �is 
modi�cation improves stability and convergence in 
heterogeneous environments, making it particularly e�ective for 
applications with diverse data sources [14]. Another method is 
Personalized Federated Learning (FL), an alternative aggregation 
method that aims to train a model that depends on individual 
user preferences or behaviors [15]. Unlike FedAvg and FedProx, 
which aim to train a single global model, personalized FL allows 
for the creation of customized models for each user or device. 
�is is achieved by incorporating user-speci�c parameters or 
�ne-tuning the global model locally to better adapt to individual 
data distributions. Personalized FL is especially useful in 
scenarios where user data exhibits signi�cant variability, such as 
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is 
FedAvg, where the weight is the number of data samples 

available for training at each node. FedAvg is a well-established 
theoretical foundation approach and simpler to implement 
than the other approaches, which may require a more complex 
mechanism for tailoring models to individual users. 

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially 
the work done in, we decided that the best technique to model 
RUL is to use deep learning with LSTM neural network [8]. 
LSTM is a type of Recurrent Neural Network (RNN) that is 
suitable for modeling events that happen in sequence. LSTM 
avoids the common vanishing gradient problem by using gates 
to store or forget information as needed [16]. �is allows LSTM 
to learn long-term dependencies more e�ectively while having 
the ability to forget learned relationships that no longer bene�t 
the goal of minimizing loss. Each LSTM cell is composed of 
three gates implemented as sigmoid functions. Data xt comes 
into the cell, and becomes part of gt the candidate cell which 
also has previous memory information. �e ft (forget) gate 
decides what information should be forgotten; the it (input) 
gate decides what information should be stored, and the ot (output) gate decides what information should be the output 
from the cell. Hidden state St-1 and cell state Lt-1 contain the 
short and long-term memory states from the previous cells 
respectively. Figure 2 demonstrates the internal workings of a 
single LSTM cell.

Figure 2. Diagram of LSTM cell internal structures. 

Model validation
We used the Keras Tuner python module to do extensive tuning 
of our neural networks. �is module allows nearly limitless 
customization of model tuning with skilled use of Python. See 
the documentation of the Keras Tuner Python module for more 
information on the usage. Table 2 below shows the exact 
hyper-parameters and values tested.

Hyper-parameter Name Values

Sequence Length 1, 2, 4, 8

Batch Size 1, 8, 32
Layer Dropout 0.1, 0.2, 0.3
Recurrent Dropout 0.1, 0.2
Learning Rate 0.0001, 0.001, 0.002
Gaussian Noise 0.01, 0.1

Table 2. Keras Tuner Con�guration

Metrics and loss
When it comes to metrics for regression problems in machine 
learning, there are three main loss functions: Mean Squared 
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2). 
Let N be the number of prediction samples, ȳ be the mean of the 
true values, yi and ŷⁱ be the true and predicted values at sample 
i, respectively. �ese metrics are de�ned as: 

              (1)

       (2)

       (3)

 MSE is a very punishing loss because it is non-linear with 
respect to error size. For example, an error of 10 is 100 times 
worse than an error of 1 because of the squaring. Additionally, 
the use of the square changes the units of the error to squared 
target units which may be di�cult to understand. Because of 
this, Root-MSE is a popular choice: RMSE=√MSE. can be good 
because it is recorded in the same units as the target variable 
(engine cycles in our case); however, it is linearly punishing and 
treats an error of qβ as being q times worse than an error of β 
which may not be good in certain cases such as jet engine 
failure. R2 is generally not chosen as a loss as it is di�cult to 
understand it as a loss function and easy to manipulate by 
adding more variables to our input and “curating” the validation 
data to have low variance. However, given two models with the 
same input variables evaluated on the same data, R2 can be a 
good “tie-breaker” for similar RMSE or MAE. For the reasons 
laid out above, we selected to use RMSE for the training and 
validation loss of our models, but we reported MAE as our 
second metric.

Model architecture
Derived from the work done in, we used a neural network 
architecture in Figure 3 that leverages the recurrent capabilities 
and robustness of LSTM cells with the approximation abilities 
of fully connected layers [8]. �e dropout layers and recurrent 
dropout in the LSTM are used to prevent over-�tting and 
improve generalization on unseen data. �e Gaussian noise 
layers are also generalization-aiding layers, as well as the 
di�erential privacy facet of Federated Learning.

Figure 3. Neural network architecture diagram

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal 
performance in machine learning models, and it involves three 
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset 
have noise included. �e noise was purposefully added when 
the data was being generated [9]. Noise can be bad for machine 
learning models since the models may over-�t the noise of the 
training data, which has no real in�uence on the underlying 
phenomena. Filtering is a way to reduce the noise in the signals 
and improve the model generalization. We chose to use a 
median �lter, which is a sliding window �lter that suppresses 
noise and outliers, as illustrated in Figure 4 for Engine 11 of 
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided 
the signals based on each unit within each node. �en we tried 
kernel sizes k=3,5,7,9,11,…, Mk where Mk =      , si being the 
number of samples for unit i. �e best kernel for each unit was 
selected as the one that maximizes the linear correlation 
between the target (RUL) and the signal being analyzed. We 
then took the weighted geometric average of all the kernels and 
set it as the �nal kernel size to use. �e weight varied as the 
correlation and the number of samples for the unit. �e best was 
selected depending on the �nal model performance. 
 

�e second technique used is a simple “pruning” technique, 
which randomly removes some samples from the ends of the 
sequences of some of the time series in the training set. �is 
method is similar in execution to neural network pruning, 
though the goal is to make the data more representative as 
opposed to reducing complexity [19,20]. �is was done to 
mimic the test set time series, which did not run until failure. 
�e general idea was to prevent the model from over-�tting to a 
time series that starts at full health and ends at critical failure. 
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in 
vastly di�erent scales, such as data taken from di�erent sensors 
from di�erent jet engines in di�erent operating conditions [21]. 
�e di�ering scales and variances can cause the neural network 
to unfairly bias certain dimensions in the data due to 
undesirable reasons. We elected to use the popular z-score 
normalization technique, which takes all dimensions in the data 
and normalizes them to have approximately zero mean and 

standard deviation of 1. �is creates an even playing �eld when 
it comes to assigning neural network parameters during 
optimization. To use this technique, we simply turn each 
observation in each sample into a z-score. Let X be the set of all 
observations for a certain feature in one of our agents, we can 
�nd the z-score for the ith observation xi using:

   from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that 
deal with the degradation of parts, we decided to use some 
feature engineering techniques to add dimensions and new 
predictors to our data. �e �rst technique is a simple 
accumulation technique where we take the cumulative sum of 
certain signals throughout the degradation process. �e second 
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input 
space can add helpful dimensions to our dataset [22]. We took a 
similar approach by taking a simple, single-dimension, 
single-time-step signed change calculation to some of our 
features and added these as new features. �e single time step is 
because we do not know how long the “cycle” time dimension is. 
Given that most engines in the dataset fail within 200 cycles, it 
is safe to say each cycle is a relatively large time step, such as 
hours or even an entire �ight. �us, having too large of a 
window may not capture meaningful change. �e following 
snippet of code in Listing 2 demonstrates how the rate of change 
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3 
outline the optimal con�guration for the Long 
Short-Term Memory (LSTM) network used in 
predicting the Remaining Useful Life (RUL) of jet 
engines within a federated learning framework. �e 
model employs 4 LSTM layers and 4 dense layers, 
each with 64 units per layer, which balances model 
complexity and computational e�ciency. A batch 
size 32 was selected, enabling e�cient training 
while maintaining su�cient gradient updates. To 
prevent over�tting, a dropout rate of 0.1 and a 
recurrent dropout rate of 0.2 were applied, ensuring 
robust generalization to unseen data. �e learning 
rate was set to 0.001, a standard choice for achieving 
stable convergence during training. Additionally, 
Gaussian noise with a variance of 0.01 was 
introduced to improve the model's generalization 
by simulating slight variations in the input data. 
�ese hyperparameters were �ne-tuned through 
extensive experimentation using KerasTuner, 
ensuring optimal performance for the predictive 
maintenance task while preserving data privacy in a 
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several 
studies aggregated by Asif et al. and compared the results with 
our federated averaged model results [1]. We used statistical 
tests to compare these models. First, we ran two-tailed, equal 
means tests for all of them without selecting an α value 
beforehand. All the p-values were extremely low. �us, all of the 
equal means hypotheses were rejected, suggesting that our 
models either outperformed or underperformed against each 
study.

 We then performed greater-than-or-equal-to and 
less-than-or-equal-to one-tailed tests against each of the studies 
and recorded the results. Table 5 below summarizes the studies 
for which our model was statistically better on average. �e 
study number refers to the order in which the study appears in 
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set 
performance for our agents and our aggregated model. We also 

have graphical demonstrations in Figure 5 of how our model 
predicts the degradation of the di�erent faults over time, 
considering the di�erent conditions simulated within the 
di�erent agents.

We also generated 95% con�dence intervals for the true mean 
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average, 
the FL approach either maintained or improved the model 
performance. While the test error across the individual agents 
showed signi�cant variance, the aggregated model 
demonstrated the ability to generalize and balance the error 
overall. �e variance in individual agent performance can be 
explained by the operating conditions detailed in Table 1. 
FD002 and FD004 are simulated with variance in six operating 
conditions (altitude, pressure, air speed, etc.), while FD001 and 
FD003 are simulated at sea level with no variance. �us, FD002 
and FD004 performed 1.25-1.6 times worse than the other 
agents. �e statistical analysis provided further insights into the 
e�ectiveness of the FL model. By conducting two-tailed equal 
means tests and greater-than-or-equal-to and less-than-or- 
equal-to one-tailed tests, we were able to compare our model’s 
performance against other studies. �e consistently low 
p-values and the rejection of null hypotheses in several cases 
suggest that our FL-based model either outperforms or is 
comparable to existing methods in predictive maintenance. �is 
statistical rigor con�rms that the federated approach not only 
preserves data privacy but also maintains, if not improves, 
model accuracy.

Conclusions 
�is study explores the application of FL in PM tasks, focusing 
on engine fault prediction using deep learning with LSTM cells. 
�e primary motivation behind this work was to address the 
challenges of maintaining data privacy while allowing 
collaboration between entities with data silos. Our main 
hypothesis was that implementing the FL framework would 
either maintain or improve the model performance on average 
when compared to the centralized learning approach. �e 
implementation of FL o�ers several key advantages in the 

context of predictive maintenance. Firstly, it preserves data 
privacy by ensuring that sensitive data remains localized on the 
devices where it is generated. �is is particularly important in 
industries like aerospace, where operational data can include 
proprietary and sensitive information. By minimizing the need 
for data centralization, FL reduces the risk of data breaches 
while allowing collaboration between entities that would 
otherwise not be able to collaborate. However, the study also 
highlights some challenges associated with the implementation 
of FL in predictive maintenance. Managing the FL process 
across multiple devices introduces complexity, particularly in 
coordinating updates and maintaining consistent model 
performance across diverse environments. Additionally, the 
federated approach can lead to biased subsets of data at each 
node, which may a�ect the generalization of the global model. 
Despite these challenges, the ability to collaborate across 
di�erent entities without sharing raw data opens new 
possibilities for improving the maintenance models 
industry-wide. �is collaborative approach can accelerate 
advancements in predictive maintenance technologies, 
bene�ting not just individual companies but the entire industry.
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Integrating privacy-preserving machine learning (ML) 
techniques—particularly Federated Learning (FL)—into 
Predictive Maintenance (PM), represents a signi�cant shi� in 
how industrial operations manage maintenance and data 
security. �is approach has broad implications for operational 
e�ciency, data privacy, regulatory compliance, and 
technological innovation. In FL, data are processed locally at the 
device or server level, drastically reducing the risk of exposing 
sensitive information during transmission or in a centralized 
database [1]. �is is crucial for industries where operational 
data may include proprietary or sensitive business information. 
By minimizing data centralization, federated learning decreases 
the vulnerability of systems to massive data breaches, a growing 
concern with the increasing incidences of cyber-attacks. �is 
work investigates the application of FL to PM tasks, focusing on 
the utilization of Long Short-Term Memory (LSTM) networks 
for predicting engine faults. Our research is motivated by the 
increasing demand for e�cient PM methodologies that can 
minimize downtime and reduce operational costs in various 
industries [2]. Privacy-preserving ML enables real-time data 
analysis directly on the machines where data is generated. �is 
allows for immediate identi�cation of potential issues, 
facilitating quicker responses to prevent failures. With the 

ability to analyze data across a network of devices without 
compromising privacy, organizations can optimize 
maintenance schedules based on predictive insights, rather 
than reactive or scheduled maintenance strategies. �is not 
only extends the life of equipment but also reduces 
unnecessary downtime. FL aligns with global data protection 
regulations towards treating privacy as a fundamental human 
right and establishing robust privacy protection mechanisms 
in the era of arti�cial intelligence [3,4]. �e latest update of the 
National Arti�cial Intelligence R&D Strategic Plan by the 
White House in 2023 underscores the signi�cance of FL in 
addressing data privacy and security concerns. 1�is plan 
elaborates on long-term investment strategies in responsible 
AI research, emphasizing the need for advancements in 
privacy-preserving data sharing and the ongoing challenges 
within FL. �e General Data Protection Regulation (GDPR)2 
in Europe also emphasizes data minimization, privacy by 
design, and the principle of processing data close to its source. 
Since FL does not require data to leave its source, it simpli�es 
compliance with laws that restrict cross-border data transfers, 
making it an attractive option for multinational corporations. 
In FL only essential model-related information is transmitted. 
�erefore, FL can signi�cantly reduce the costs associated 

with data transmission. In addition, by processing data locally 
and not requiring a central repository for vast amounts of raw 
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning, 
we re�ne our models’ accuracy, utilizing FL to distribute the 
computational load and enhance data privacy. �e results 
section provides an in-depth analysis of the models’ 
performance. Federated learning allows for the development of 
highly tailored models that learn from diverse data sources 
without compromising sensitive information. �is capability 
can drive innovation in PM technologies. Di�erent entities, 
even competitors, can collaborate to improve predictive models 
without sharing sensitive data, accelerating industry-wide 
advancements in maintenance strategies. Managing FL across 
many devices and locations introduces complexity, especially 
when coordinating updates and maintaining consistent model 
performance across diverse environments. Implementing an FL 
system requires sophisticated infrastructure and a shi� in 
traditional data management strategies, which might be 
challenging for some organizations. �is study encompasses a 
process validation section, where we underscore our 
collaboration with industry experts to ensure that our research 
objectives align with practical applications and that our �ndings 
remain relevant. �e use of privacy-preserving ML and FL in 
PM strengthens data security and enhances operational 
e�ciencies and compliance with regulatory norms. �ese 
technologies are setting new standards for how industries 
approach maintenance tasks while safeguarding critical data. As 
adoption grows, they could rede�ne best practices for asset 
management across various sectors, promising a future where 
PM is both more e�ective and inherently secure. In summary, 
this study delves into the application of federated learning for 
PM, presenting a structured approach to model development 
employing LSTM networks. Our �ndings aim to contribute to 
the ongoing discussion on the potential of FL in industrial 
applications, particularly in enhancing PM strategies to achieve 
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies: 
reactive and proactive. Both are widely used due to their 
di�erent advantages and disadvantages. Reactive maintenance 
describes the process of waiting for the life cycle of a part of an 
airplane subsystem to completely run out before repairing or 
replacing the faulty components [5]. Proactive maintenance 
describes the process of scheduling regular maintenance to 
repair/replace components before they become faulty [6]. �e 
advantage of reactive maintenance is that we can get 100% usage 
out of our parts, but the obvious disadvantage is that there is a 
high chance of component failure happening during �ights. 
�is can work for something non-critical like overhead cockpit 
lights, which would not force a �ight to be grounded if they 
failed in �ight. On the other hand, something like a 
High-Pressure Compressor (HPC) failure in �ight could prove 
disastrous. In these scenarios, it is better to perform proactive 
maintenance, where the disadvantage is that we lose some usage 
from our components, but we limit the number of in-�ight 
failures. In more recent years, with the advancements of ML, 
PM has become more popular as a third approach where we can 

use machine learning to schedule our maintenance for high-risk 
systems and still get close to 100% usage with a low-error model 
[7,8]. �ere are two main problems with this approach: small 
�eets with small sample sizes to train their PM models and large 
�eets unwilling to share their plentiful data with competitors 
due to privacy concerns. �e work done in this study applies to 
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE) 
researchers conducted engine degradation simulations using 
the Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and 
readily accessible on the NASA website, which can serve as a 
valuable resource for studying and analyzing engine 
degradation behaviors in various operational scenarios. �e 
data was converted to .csv and is stored on our GitHub 
repository.

 �e C-MAPSS dataset is an operational behavior dataset 
from di�erent engines. It o�ers a detailed look into the normal 
operational conditions of engines, including the presence of 
noise. Each data entry in the dataset contains 26 columns, 
encompassing information such as unit number, time cycles, 
three operational settings, and 21 sensor measurements (see 
Appendix A for details). �ese data snapshots, taken during 
individual operational cycles, provide valuable insights into the 
engine’s behavior. Table 1 provides detailed information about 
each node. Sensor measurements are observed to be 
contaminated with noise, which can potentially introduce 
inaccuracies and inconsistencies in the data analysis process 
[10].

 �e dataset is structured into four training and four testing 
datasets, each with varying numbers of trajectories, conditions, 
and fault modes. �e training sets are designed to showcase 
examples of faults that grow in magnitude until system failure 
occurs, providing valuable learning opportunities for predictive 
maintenance and fault detection. �e testing sets may end 
before system failure, allowing for the evaluation of predictive 
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify 
correlations between variables in a dataset, making them 
particularly useful for analyzing relationships among sensor 
measurements [11]. By plotting a heat map of the correlation 
matrix, patterns of correlation (both positive and negative) 
between pairs of variables can be easily visualized through color 
gradients. In the plot below, the lightest (white/tan) and darkest 
(black) colors indicate the highest linear correlation among 

variables. �e orange/red color indicates there is little to no 
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the 
strongest relationships consisting of SM2, SM3, SM4, SM7, 
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are 
correlated with almost all sensor measurement except SM6, 
SM9, and SM14. Regarding the trend, it seems like RUL has a 
similar correlation trend with SM7, SM12, SM20, and SM21, 
which can imply that RUL is mainly determined by SM7, SM12, 
SM20, and SM21. �e other interesting part is that OS1 and OS2 
do not have any relationship with the sensor measurements. In 
FD002, the RUL has no relationship with any of the sensor 
measurements. SM15 has the strongest relationship with every 
other sensor measurement, but it seems like it has the opposite 
trend compared to others. Every operational setting and sensor 
measurements are correlated with each other except for the 
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and 
OS2 are a�ected by most of the sensor measurements. In 
FD003, the heatmaps show similar trends and relationships 
among the operational setting and sensor measurements as in 
FD001. For FD004, the heatmaps show similar trends and 
relationships among the operational setting and sensor 
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor 
measurements from column variables 6 to 26, with unclear 
descriptions. �e operational settings are Mach Number (0 to 
0.90), altitude (sea level to 40,000 feet), and sea-level 
temperature (-60°F to 103°F). Upon further research, the labels 
were identi�ed for the sensor measurements with an 
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist 
of all data up until each failure, and testing sets have the cut-o� 
of some data before the failure. For example, in the training set 
for FD001, all rows with unit = 1 are the data from the �rst 

failure. �e last row of unit 1 has cycles = 192, which means the 
engine failed a�er 192 operational cycles. For the testing set, the 
last row of unit = 1 has cycle = 31, which is not when the failure 
happened. �e separate RUL �les contain the number of cycles 
until failure from the last sample for each test unit. In the case of 
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data 
privacy and security. It is particularly bene�cial in scenarios 
where data con�dentiality is crucial in a highly sensitive 
environment. �is approach was chosen because it helps 
prevent data leakage and reverse engineering of the data. 
However, the setup can lead to biased subsets of data at each 
node, as the training data is not shareable. To address this, a 
federated learning algorithm is employed. Initially, the server 
sends instructions to each node to train a local model. �ese 
local node models train on their respective data, and a�er a 
training round, they only transmit their updated weights to the 
central server. �e central server then aggregates these weights. 

 �ere are several aggregation methods available in 
Federated Learning (FL), each designed to address speci�c 

challenges and requirements, such as Federated 
Average (Fed Avg), FedProx, and personalized FL, 
etc. FedAvg is one of the most widely used methods, 
functioning as a generalized version of local-SGD, 
which performs a weighted average of local model 
parameters (weights) a�er a certain number of 
optimization steps are performed by each model 
[12]. �e weights for the average are determined as 
seen �t by the implementation. �e combined 
model is then transmitted back to the nodes, which 
use the updated model parameters as a starting 
point for another round of training [13]. �is 
process continues for multiple rounds until the 
global model converges. FedProx is a generalization 
of FedAvg and is primarily designed to address 
challenges associated with Independent and 
Identically Distributed (non-IID) data, which 
means data distributions vary signi�cantly across 
devices. �is method introduces a proximal term to 
the local optimization objective, which restricts the 

local updates to remain close to the global model. �is 
modi�cation improves stability and convergence in 
heterogeneous environments, making it particularly e�ective for 
applications with diverse data sources [14]. Another method is 
Personalized Federated Learning (FL), an alternative aggregation 
method that aims to train a model that depends on individual 
user preferences or behaviors [15]. Unlike FedAvg and FedProx, 
which aim to train a single global model, personalized FL allows 
for the creation of customized models for each user or device. 
�is is achieved by incorporating user-speci�c parameters or 
�ne-tuning the global model locally to better adapt to individual 
data distributions. Personalized FL is especially useful in 
scenarios where user data exhibits signi�cant variability, such as 
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is 
FedAvg, where the weight is the number of data samples 

available for training at each node. FedAvg is a well-established 
theoretical foundation approach and simpler to implement 
than the other approaches, which may require a more complex 
mechanism for tailoring models to individual users. 

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially 
the work done in, we decided that the best technique to model 
RUL is to use deep learning with LSTM neural network [8]. 
LSTM is a type of Recurrent Neural Network (RNN) that is 
suitable for modeling events that happen in sequence. LSTM 
avoids the common vanishing gradient problem by using gates 
to store or forget information as needed [16]. �is allows LSTM 
to learn long-term dependencies more e�ectively while having 
the ability to forget learned relationships that no longer bene�t 
the goal of minimizing loss. Each LSTM cell is composed of 
three gates implemented as sigmoid functions. Data xt comes 
into the cell, and becomes part of gt the candidate cell which 
also has previous memory information. �e ft (forget) gate 
decides what information should be forgotten; the it (input) 
gate decides what information should be stored, and the ot (output) gate decides what information should be the output 
from the cell. Hidden state St-1 and cell state Lt-1 contain the 
short and long-term memory states from the previous cells 
respectively. Figure 2 demonstrates the internal workings of a 
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning 
of our neural networks. �is module allows nearly limitless 
customization of model tuning with skilled use of Python. See 
the documentation of the Keras Tuner Python module for more 
information on the usage. Table 2 below shows the exact 
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine 
learning, there are three main loss functions: Mean Squared 
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2). 
Let N be the number of prediction samples, ȳ be the mean of the 
true values, yi and ŷⁱ be the true and predicted values at sample 
i, respectively. �ese metrics are de�ned as: 

              (1)

       (2)

       (3)

 MSE is a very punishing loss because it is non-linear with 
respect to error size. For example, an error of 10 is 100 times 
worse than an error of 1 because of the squaring. Additionally, 
the use of the square changes the units of the error to squared 
target units which may be di�cult to understand. Because of 
this, Root-MSE is a popular choice: RMSE=√MSE. can be good 
because it is recorded in the same units as the target variable 
(engine cycles in our case); however, it is linearly punishing and 
treats an error of qβ as being q times worse than an error of β 
which may not be good in certain cases such as jet engine 
failure. R2 is generally not chosen as a loss as it is di�cult to 
understand it as a loss function and easy to manipulate by 
adding more variables to our input and “curating” the validation 
data to have low variance. However, given two models with the 
same input variables evaluated on the same data, R2 can be a 
good “tie-breaker” for similar RMSE or MAE. For the reasons 
laid out above, we selected to use RMSE for the training and 
validation loss of our models, but we reported MAE as our 
second metric.

Model architecture
Derived from the work done in, we used a neural network 
architecture in Figure 3 that leverages the recurrent capabilities 
and robustness of LSTM cells with the approximation abilities 
of fully connected layers [8]. �e dropout layers and recurrent 
dropout in the LSTM are used to prevent over-�tting and 
improve generalization on unseen data. �e Gaussian noise 
layers are also generalization-aiding layers, as well as the 
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal 
performance in machine learning models, and it involves three 
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset 
have noise included. �e noise was purposefully added when 
the data was being generated [9]. Noise can be bad for machine 
learning models since the models may over-�t the noise of the 
training data, which has no real in�uence on the underlying 
phenomena. Filtering is a way to reduce the noise in the signals 
and improve the model generalization. We chose to use a 
median �lter, which is a sliding window �lter that suppresses 
noise and outliers, as illustrated in Figure 4 for Engine 11 of 
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided 
the signals based on each unit within each node. �en we tried 
kernel sizes k=3,5,7,9,11,…, Mk where Mk =      , si being the 
number of samples for unit i. �e best kernel for each unit was 
selected as the one that maximizes the linear correlation 
between the target (RUL) and the signal being analyzed. We 
then took the weighted geometric average of all the kernels and 
set it as the �nal kernel size to use. �e weight varied as the 
correlation and the number of samples for the unit. �e best was 
selected depending on the �nal model performance. 
 

Figure 4. Example of Median Filter on HPC Static Pressure Signal for 
FD002 Engine 11 Time Series. 

�e second technique used is a simple “pruning” technique, 
which randomly removes some samples from the ends of the 
sequences of some of the time series in the training set. �is 
method is similar in execution to neural network pruning, 
though the goal is to make the data more representative as 
opposed to reducing complexity [19,20]. �is was done to 
mimic the test set time series, which did not run until failure. 
�e general idea was to prevent the model from over-�tting to a 
time series that starts at full health and ends at critical failure. 
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in 
vastly di�erent scales, such as data taken from di�erent sensors 
from di�erent jet engines in di�erent operating conditions [21]. 
�e di�ering scales and variances can cause the neural network 
to unfairly bias certain dimensions in the data due to 
undesirable reasons. We elected to use the popular z-score 
normalization technique, which takes all dimensions in the data 
and normalizes them to have approximately zero mean and 

standard deviation of 1. �is creates an even playing �eld when 
it comes to assigning neural network parameters during 
optimization. To use this technique, we simply turn each 
observation in each sample into a z-score. Let X be the set of all 
observations for a certain feature in one of our agents, we can 
�nd the z-score for the ith observation xi using:

   from noise, outlier, and scale-related biases.

Listing 1. Pruning units

Feature engineering
Given that our dataset is made up of multiple time series that 
deal with the degradation of parts, we decided to use some 
feature engineering techniques to add dimensions and new 
predictors to our data. �e �rst technique is a simple 
accumulation technique where we take the cumulative sum of 
certain signals throughout the degradation process. �e second 
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input 
space can add helpful dimensions to our dataset [22]. We took a 
similar approach by taking a simple, single-dimension, 
single-time-step signed change calculation to some of our 
features and added these as new features. �e single time step is 
because we do not know how long the “cycle” time dimension is. 
Given that most engines in the dataset fail within 200 cycles, it 
is safe to say each cycle is a relatively large time step, such as 
hours or even an entire �ight. �us, having too large of a 
window may not capture meaningful change. �e following 
snippet of code in Listing 2 demonstrates how the rate of change 
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3 
outline the optimal con�guration for the Long 
Short-Term Memory (LSTM) network used in 
predicting the Remaining Useful Life (RUL) of jet 
engines within a federated learning framework. �e 
model employs 4 LSTM layers and 4 dense layers, 
each with 64 units per layer, which balances model 
complexity and computational e�ciency. A batch 
size 32 was selected, enabling e�cient training 
while maintaining su�cient gradient updates. To 
prevent over�tting, a dropout rate of 0.1 and a 
recurrent dropout rate of 0.2 were applied, ensuring 
robust generalization to unseen data. �e learning 
rate was set to 0.001, a standard choice for achieving 
stable convergence during training. Additionally, 
Gaussian noise with a variance of 0.01 was 
introduced to improve the model's generalization 
by simulating slight variations in the input data. 
�ese hyperparameters were �ne-tuned through 
extensive experimentation using KerasTuner, 
ensuring optimal performance for the predictive 
maintenance task while preserving data privacy in a 
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several 
studies aggregated by Asif et al. and compared the results with 
our federated averaged model results [1]. We used statistical 
tests to compare these models. First, we ran two-tailed, equal 
means tests for all of them without selecting an α value 
beforehand. All the p-values were extremely low. �us, all of the 
equal means hypotheses were rejected, suggesting that our 
models either outperformed or underperformed against each 
study.

 We then performed greater-than-or-equal-to and 
less-than-or-equal-to one-tailed tests against each of the studies 
and recorded the results. Table 5 below summarizes the studies 
for which our model was statistically better on average. �e 
study number refers to the order in which the study appears in 
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set 
performance for our agents and our aggregated model. We also 

have graphical demonstrations in Figure 5 of how our model 
predicts the degradation of the di�erent faults over time, 
considering the di�erent conditions simulated within the 
di�erent agents.

We also generated 95% con�dence intervals for the true mean 
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average, 
the FL approach either maintained or improved the model 
performance. While the test error across the individual agents 
showed signi�cant variance, the aggregated model 
demonstrated the ability to generalize and balance the error 
overall. �e variance in individual agent performance can be 
explained by the operating conditions detailed in Table 1. 
FD002 and FD004 are simulated with variance in six operating 
conditions (altitude, pressure, air speed, etc.), while FD001 and 
FD003 are simulated at sea level with no variance. �us, FD002 
and FD004 performed 1.25-1.6 times worse than the other 
agents. �e statistical analysis provided further insights into the 
e�ectiveness of the FL model. By conducting two-tailed equal 
means tests and greater-than-or-equal-to and less-than-or- 
equal-to one-tailed tests, we were able to compare our model’s 
performance against other studies. �e consistently low 
p-values and the rejection of null hypotheses in several cases 
suggest that our FL-based model either outperforms or is 
comparable to existing methods in predictive maintenance. �is 
statistical rigor con�rms that the federated approach not only 
preserves data privacy but also maintains, if not improves, 
model accuracy.

Conclusions 
�is study explores the application of FL in PM tasks, focusing 
on engine fault prediction using deep learning with LSTM cells. 
�e primary motivation behind this work was to address the 
challenges of maintaining data privacy while allowing 
collaboration between entities with data silos. Our main 
hypothesis was that implementing the FL framework would 
either maintain or improve the model performance on average 
when compared to the centralized learning approach. �e 
implementation of FL o�ers several key advantages in the 

context of predictive maintenance. Firstly, it preserves data 
privacy by ensuring that sensitive data remains localized on the 
devices where it is generated. �is is particularly important in 
industries like aerospace, where operational data can include 
proprietary and sensitive information. By minimizing the need 
for data centralization, FL reduces the risk of data breaches 
while allowing collaboration between entities that would 
otherwise not be able to collaborate. However, the study also 
highlights some challenges associated with the implementation 
of FL in predictive maintenance. Managing the FL process 
across multiple devices introduces complexity, particularly in 
coordinating updates and maintaining consistent model 
performance across diverse environments. Additionally, the 
federated approach can lead to biased subsets of data at each 
node, which may a�ect the generalization of the global model. 
Despite these challenges, the ability to collaborate across 
di�erent entities without sharing raw data opens new 
possibilities for improving the maintenance models 
industry-wide. �is collaborative approach can accelerate 
advancements in predictive maintenance technologies, 
bene�ting not just individual companies but the entire industry.
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Integrating privacy-preserving machine learning (ML) 
techniques—particularly Federated Learning (FL)—into 
Predictive Maintenance (PM), represents a signi�cant shi� in 
how industrial operations manage maintenance and data 
security. �is approach has broad implications for operational 
e�ciency, data privacy, regulatory compliance, and 
technological innovation. In FL, data are processed locally at the 
device or server level, drastically reducing the risk of exposing 
sensitive information during transmission or in a centralized 
database [1]. �is is crucial for industries where operational 
data may include proprietary or sensitive business information. 
By minimizing data centralization, federated learning decreases 
the vulnerability of systems to massive data breaches, a growing 
concern with the increasing incidences of cyber-attacks. �is 
work investigates the application of FL to PM tasks, focusing on 
the utilization of Long Short-Term Memory (LSTM) networks 
for predicting engine faults. Our research is motivated by the 
increasing demand for e�cient PM methodologies that can 
minimize downtime and reduce operational costs in various 
industries [2]. Privacy-preserving ML enables real-time data 
analysis directly on the machines where data is generated. �is 
allows for immediate identi�cation of potential issues, 
facilitating quicker responses to prevent failures. With the 

ability to analyze data across a network of devices without 
compromising privacy, organizations can optimize 
maintenance schedules based on predictive insights, rather 
than reactive or scheduled maintenance strategies. �is not 
only extends the life of equipment but also reduces 
unnecessary downtime. FL aligns with global data protection 
regulations towards treating privacy as a fundamental human 
right and establishing robust privacy protection mechanisms 
in the era of arti�cial intelligence [3,4]. �e latest update of the 
National Arti�cial Intelligence R&D Strategic Plan by the 
White House in 2023 underscores the signi�cance of FL in 
addressing data privacy and security concerns. 1�is plan 
elaborates on long-term investment strategies in responsible 
AI research, emphasizing the need for advancements in 
privacy-preserving data sharing and the ongoing challenges 
within FL. �e General Data Protection Regulation (GDPR)2 
in Europe also emphasizes data minimization, privacy by 
design, and the principle of processing data close to its source. 
Since FL does not require data to leave its source, it simpli�es 
compliance with laws that restrict cross-border data transfers, 
making it an attractive option for multinational corporations. 
In FL only essential model-related information is transmitted. 
�erefore, FL can signi�cantly reduce the costs associated 

with data transmission. In addition, by processing data locally 
and not requiring a central repository for vast amounts of raw 
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning, 
we re�ne our models’ accuracy, utilizing FL to distribute the 
computational load and enhance data privacy. �e results 
section provides an in-depth analysis of the models’ 
performance. Federated learning allows for the development of 
highly tailored models that learn from diverse data sources 
without compromising sensitive information. �is capability 
can drive innovation in PM technologies. Di�erent entities, 
even competitors, can collaborate to improve predictive models 
without sharing sensitive data, accelerating industry-wide 
advancements in maintenance strategies. Managing FL across 
many devices and locations introduces complexity, especially 
when coordinating updates and maintaining consistent model 
performance across diverse environments. Implementing an FL 
system requires sophisticated infrastructure and a shi� in 
traditional data management strategies, which might be 
challenging for some organizations. �is study encompasses a 
process validation section, where we underscore our 
collaboration with industry experts to ensure that our research 
objectives align with practical applications and that our �ndings 
remain relevant. �e use of privacy-preserving ML and FL in 
PM strengthens data security and enhances operational 
e�ciencies and compliance with regulatory norms. �ese 
technologies are setting new standards for how industries 
approach maintenance tasks while safeguarding critical data. As 
adoption grows, they could rede�ne best practices for asset 
management across various sectors, promising a future where 
PM is both more e�ective and inherently secure. In summary, 
this study delves into the application of federated learning for 
PM, presenting a structured approach to model development 
employing LSTM networks. Our �ndings aim to contribute to 
the ongoing discussion on the potential of FL in industrial 
applications, particularly in enhancing PM strategies to achieve 
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies: 
reactive and proactive. Both are widely used due to their 
di�erent advantages and disadvantages. Reactive maintenance 
describes the process of waiting for the life cycle of a part of an 
airplane subsystem to completely run out before repairing or 
replacing the faulty components [5]. Proactive maintenance 
describes the process of scheduling regular maintenance to 
repair/replace components before they become faulty [6]. �e 
advantage of reactive maintenance is that we can get 100% usage 
out of our parts, but the obvious disadvantage is that there is a 
high chance of component failure happening during �ights. 
�is can work for something non-critical like overhead cockpit 
lights, which would not force a �ight to be grounded if they 
failed in �ight. On the other hand, something like a 
High-Pressure Compressor (HPC) failure in �ight could prove 
disastrous. In these scenarios, it is better to perform proactive 
maintenance, where the disadvantage is that we lose some usage 
from our components, but we limit the number of in-�ight 
failures. In more recent years, with the advancements of ML, 
PM has become more popular as a third approach where we can 

use machine learning to schedule our maintenance for high-risk 
systems and still get close to 100% usage with a low-error model 
[7,8]. �ere are two main problems with this approach: small 
�eets with small sample sizes to train their PM models and large 
�eets unwilling to share their plentiful data with competitors 
due to privacy concerns. �e work done in this study applies to 
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE) 
researchers conducted engine degradation simulations using 
the Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and 
readily accessible on the NASA website, which can serve as a 
valuable resource for studying and analyzing engine 
degradation behaviors in various operational scenarios. �e 
data was converted to .csv and is stored on our GitHub 
repository.

 �e C-MAPSS dataset is an operational behavior dataset 
from di�erent engines. It o�ers a detailed look into the normal 
operational conditions of engines, including the presence of 
noise. Each data entry in the dataset contains 26 columns, 
encompassing information such as unit number, time cycles, 
three operational settings, and 21 sensor measurements (see 
Appendix A for details). �ese data snapshots, taken during 
individual operational cycles, provide valuable insights into the 
engine’s behavior. Table 1 provides detailed information about 
each node. Sensor measurements are observed to be 
contaminated with noise, which can potentially introduce 
inaccuracies and inconsistencies in the data analysis process 
[10].

 �e dataset is structured into four training and four testing 
datasets, each with varying numbers of trajectories, conditions, 
and fault modes. �e training sets are designed to showcase 
examples of faults that grow in magnitude until system failure 
occurs, providing valuable learning opportunities for predictive 
maintenance and fault detection. �e testing sets may end 
before system failure, allowing for the evaluation of predictive 
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify 
correlations between variables in a dataset, making them 
particularly useful for analyzing relationships among sensor 
measurements [11]. By plotting a heat map of the correlation 
matrix, patterns of correlation (both positive and negative) 
between pairs of variables can be easily visualized through color 
gradients. In the plot below, the lightest (white/tan) and darkest 
(black) colors indicate the highest linear correlation among 

variables. �e orange/red color indicates there is little to no 
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the 
strongest relationships consisting of SM2, SM3, SM4, SM7, 
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are 
correlated with almost all sensor measurement except SM6, 
SM9, and SM14. Regarding the trend, it seems like RUL has a 
similar correlation trend with SM7, SM12, SM20, and SM21, 
which can imply that RUL is mainly determined by SM7, SM12, 
SM20, and SM21. �e other interesting part is that OS1 and OS2 
do not have any relationship with the sensor measurements. In 
FD002, the RUL has no relationship with any of the sensor 
measurements. SM15 has the strongest relationship with every 
other sensor measurement, but it seems like it has the opposite 
trend compared to others. Every operational setting and sensor 
measurements are correlated with each other except for the 
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and 
OS2 are a�ected by most of the sensor measurements. In 
FD003, the heatmaps show similar trends and relationships 
among the operational setting and sensor measurements as in 
FD001. For FD004, the heatmaps show similar trends and 
relationships among the operational setting and sensor 
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor 
measurements from column variables 6 to 26, with unclear 
descriptions. �e operational settings are Mach Number (0 to 
0.90), altitude (sea level to 40,000 feet), and sea-level 
temperature (-60°F to 103°F). Upon further research, the labels 
were identi�ed for the sensor measurements with an 
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist 
of all data up until each failure, and testing sets have the cut-o� 
of some data before the failure. For example, in the training set 
for FD001, all rows with unit = 1 are the data from the �rst 

failure. �e last row of unit 1 has cycles = 192, which means the 
engine failed a�er 192 operational cycles. For the testing set, the 
last row of unit = 1 has cycle = 31, which is not when the failure 
happened. �e separate RUL �les contain the number of cycles 
until failure from the last sample for each test unit. In the case of 
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data 
privacy and security. It is particularly bene�cial in scenarios 
where data con�dentiality is crucial in a highly sensitive 
environment. �is approach was chosen because it helps 
prevent data leakage and reverse engineering of the data. 
However, the setup can lead to biased subsets of data at each 
node, as the training data is not shareable. To address this, a 
federated learning algorithm is employed. Initially, the server 
sends instructions to each node to train a local model. �ese 
local node models train on their respective data, and a�er a 
training round, they only transmit their updated weights to the 
central server. �e central server then aggregates these weights. 

 �ere are several aggregation methods available in 
Federated Learning (FL), each designed to address speci�c 

challenges and requirements, such as Federated 
Average (Fed Avg), FedProx, and personalized FL, 
etc. FedAvg is one of the most widely used methods, 
functioning as a generalized version of local-SGD, 
which performs a weighted average of local model 
parameters (weights) a�er a certain number of 
optimization steps are performed by each model 
[12]. �e weights for the average are determined as 
seen �t by the implementation. �e combined 
model is then transmitted back to the nodes, which 
use the updated model parameters as a starting 
point for another round of training [13]. �is 
process continues for multiple rounds until the 
global model converges. FedProx is a generalization 
of FedAvg and is primarily designed to address 
challenges associated with Independent and 
Identically Distributed (non-IID) data, which 
means data distributions vary signi�cantly across 
devices. �is method introduces a proximal term to 
the local optimization objective, which restricts the 

local updates to remain close to the global model. �is 
modi�cation improves stability and convergence in 
heterogeneous environments, making it particularly e�ective for 
applications with diverse data sources [14]. Another method is 
Personalized Federated Learning (FL), an alternative aggregation 
method that aims to train a model that depends on individual 
user preferences or behaviors [15]. Unlike FedAvg and FedProx, 
which aim to train a single global model, personalized FL allows 
for the creation of customized models for each user or device. 
�is is achieved by incorporating user-speci�c parameters or 
�ne-tuning the global model locally to better adapt to individual 
data distributions. Personalized FL is especially useful in 
scenarios where user data exhibits signi�cant variability, such as 
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is 
FedAvg, where the weight is the number of data samples 

available for training at each node. FedAvg is a well-established 
theoretical foundation approach and simpler to implement 
than the other approaches, which may require a more complex 
mechanism for tailoring models to individual users. 

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially 
the work done in, we decided that the best technique to model 
RUL is to use deep learning with LSTM neural network [8]. 
LSTM is a type of Recurrent Neural Network (RNN) that is 
suitable for modeling events that happen in sequence. LSTM 
avoids the common vanishing gradient problem by using gates 
to store or forget information as needed [16]. �is allows LSTM 
to learn long-term dependencies more e�ectively while having 
the ability to forget learned relationships that no longer bene�t 
the goal of minimizing loss. Each LSTM cell is composed of 
three gates implemented as sigmoid functions. Data xt comes 
into the cell, and becomes part of gt the candidate cell which 
also has previous memory information. �e ft (forget) gate 
decides what information should be forgotten; the it (input) 
gate decides what information should be stored, and the ot (output) gate decides what information should be the output 
from the cell. Hidden state St-1 and cell state Lt-1 contain the 
short and long-term memory states from the previous cells 
respectively. Figure 2 demonstrates the internal workings of a 
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning 
of our neural networks. �is module allows nearly limitless 
customization of model tuning with skilled use of Python. See 
the documentation of the Keras Tuner Python module for more 
information on the usage. Table 2 below shows the exact 
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine 
learning, there are three main loss functions: Mean Squared 
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2). 
Let N be the number of prediction samples, ȳ be the mean of the 
true values, yi and ŷⁱ be the true and predicted values at sample 
i, respectively. �ese metrics are de�ned as: 

              (1)

       (2)

       (3)

 MSE is a very punishing loss because it is non-linear with 
respect to error size. For example, an error of 10 is 100 times 
worse than an error of 1 because of the squaring. Additionally, 
the use of the square changes the units of the error to squared 
target units which may be di�cult to understand. Because of 
this, Root-MSE is a popular choice: RMSE=√MSE. can be good 
because it is recorded in the same units as the target variable 
(engine cycles in our case); however, it is linearly punishing and 
treats an error of qβ as being q times worse than an error of β 
which may not be good in certain cases such as jet engine 
failure. R2 is generally not chosen as a loss as it is di�cult to 
understand it as a loss function and easy to manipulate by 
adding more variables to our input and “curating” the validation 
data to have low variance. However, given two models with the 
same input variables evaluated on the same data, R2 can be a 
good “tie-breaker” for similar RMSE or MAE. For the reasons 
laid out above, we selected to use RMSE for the training and 
validation loss of our models, but we reported MAE as our 
second metric.

Model architecture
Derived from the work done in, we used a neural network 
architecture in Figure 3 that leverages the recurrent capabilities 
and robustness of LSTM cells with the approximation abilities 
of fully connected layers [8]. �e dropout layers and recurrent 
dropout in the LSTM are used to prevent over-�tting and 
improve generalization on unseen data. �e Gaussian noise 
layers are also generalization-aiding layers, as well as the 
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal 
performance in machine learning models, and it involves three 
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset 
have noise included. �e noise was purposefully added when 
the data was being generated [9]. Noise can be bad for machine 
learning models since the models may over-�t the noise of the 
training data, which has no real in�uence on the underlying 
phenomena. Filtering is a way to reduce the noise in the signals 
and improve the model generalization. We chose to use a 
median �lter, which is a sliding window �lter that suppresses 
noise and outliers, as illustrated in Figure 4 for Engine 11 of 
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided 
the signals based on each unit within each node. �en we tried 
kernel sizes k=3,5,7,9,11,…, Mk where Mk =      , si being the 
number of samples for unit i. �e best kernel for each unit was 
selected as the one that maximizes the linear correlation 
between the target (RUL) and the signal being analyzed. We 
then took the weighted geometric average of all the kernels and 
set it as the �nal kernel size to use. �e weight varied as the 
correlation and the number of samples for the unit. �e best was 
selected depending on the �nal model performance. 
 

�e second technique used is a simple “pruning” technique, 
which randomly removes some samples from the ends of the 
sequences of some of the time series in the training set. �is 
method is similar in execution to neural network pruning, 
though the goal is to make the data more representative as 
opposed to reducing complexity [19,20]. �is was done to 
mimic the test set time series, which did not run until failure. 
�e general idea was to prevent the model from over-�tting to a 
time series that starts at full health and ends at critical failure. 
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in 
vastly di�erent scales, such as data taken from di�erent sensors 
from di�erent jet engines in di�erent operating conditions [21]. 
�e di�ering scales and variances can cause the neural network 
to unfairly bias certain dimensions in the data due to 
undesirable reasons. We elected to use the popular z-score 
normalization technique, which takes all dimensions in the data 
and normalizes them to have approximately zero mean and 

standard deviation of 1. �is creates an even playing �eld when 
it comes to assigning neural network parameters during 
optimization. To use this technique, we simply turn each 
observation in each sample into a z-score. Let X be the set of all 
observations for a certain feature in one of our agents, we can 
�nd the z-score for the ith observation xi using:

   from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that 
deal with the degradation of parts, we decided to use some 
feature engineering techniques to add dimensions and new 
predictors to our data. �e �rst technique is a simple 
accumulation technique where we take the cumulative sum of 
certain signals throughout the degradation process. �e second 
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input 
space can add helpful dimensions to our dataset [22]. We took a 
similar approach by taking a simple, single-dimension, 
single-time-step signed change calculation to some of our 
features and added these as new features. �e single time step is 
because we do not know how long the “cycle” time dimension is. 
Given that most engines in the dataset fail within 200 cycles, it 
is safe to say each cycle is a relatively large time step, such as 
hours or even an entire �ight. �us, having too large of a 
window may not capture meaningful change. �e following 
snippet of code in Listing 2 demonstrates how the rate of change 
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3 
outline the optimal con�guration for the Long 
Short-Term Memory (LSTM) network used in 
predicting the Remaining Useful Life (RUL) of jet 
engines within a federated learning framework. �e 
model employs 4 LSTM layers and 4 dense layers, 
each with 64 units per layer, which balances model 
complexity and computational e�ciency. A batch 
size 32 was selected, enabling e�cient training 
while maintaining su�cient gradient updates. To 
prevent over�tting, a dropout rate of 0.1 and a 
recurrent dropout rate of 0.2 were applied, ensuring 
robust generalization to unseen data. �e learning 
rate was set to 0.001, a standard choice for achieving 
stable convergence during training. Additionally, 
Gaussian noise with a variance of 0.01 was 
introduced to improve the model's generalization 
by simulating slight variations in the input data. 
�ese hyperparameters were �ne-tuned through 
extensive experimentation using KerasTuner, 
ensuring optimal performance for the predictive 
maintenance task while preserving data privacy in a 
federated learning setup.

Hyper-parameter Name Best Values
LSTM Layers 4
Dense Layers 4

Units Per Layer 64
Batch Size 32
Layer Dropout 0.1
Recurrent Dropout 0.2
Learning Rate 0.001
Gaussian Noise 0.01

Table 3. Hyperparameter selection

Listing 2. Rate of Change

Agent Validation RMSE Test RMSE

FD001 13.7014 13.811

FD002 14.6618 20.587

FD003 14.3186 14.201

FD004 18.1955 22.998

Aggregated 15.2193 17.899

Table 4. Validation and Test Performance

Statistical Analysis
We averaged the results across the di�erent agents over several 
studies aggregated by Asif et al. and compared the results with 
our federated averaged model results [1]. We used statistical 
tests to compare these models. First, we ran two-tailed, equal 
means tests for all of them without selecting an α value 
beforehand. All the p-values were extremely low. �us, all of the 
equal means hypotheses were rejected, suggesting that our 
models either outperformed or underperformed against each 
study.

 We then performed greater-than-or-equal-to and 
less-than-or-equal-to one-tailed tests against each of the studies 
and recorded the results. Table 5 below summarizes the studies 
for which our model was statistically better on average. �e 
study number refers to the order in which the study appears in 
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set 
performance for our agents and our aggregated model. We also 

have graphical demonstrations in Figure 5 of how our model 
predicts the degradation of the di�erent faults over time, 
considering the di�erent conditions simulated within the 
di�erent agents.

Figure 5. Testing set predictions for (a)FD001, (b)FD002, (c)FD003, 
and (d)FD004.

We also generated 95% con�dence intervals for the true mean 
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average, 
the FL approach either maintained or improved the model 
performance. While the test error across the individual agents 
showed signi�cant variance, the aggregated model 
demonstrated the ability to generalize and balance the error 
overall. �e variance in individual agent performance can be 
explained by the operating conditions detailed in Table 1. 
FD002 and FD004 are simulated with variance in six operating 
conditions (altitude, pressure, air speed, etc.), while FD001 and 
FD003 are simulated at sea level with no variance. �us, FD002 
and FD004 performed 1.25-1.6 times worse than the other 
agents. �e statistical analysis provided further insights into the 
e�ectiveness of the FL model. By conducting two-tailed equal 
means tests and greater-than-or-equal-to and less-than-or- 
equal-to one-tailed tests, we were able to compare our model’s 
performance against other studies. �e consistently low 
p-values and the rejection of null hypotheses in several cases 
suggest that our FL-based model either outperforms or is 
comparable to existing methods in predictive maintenance. �is 
statistical rigor con�rms that the federated approach not only 
preserves data privacy but also maintains, if not improves, 
model accuracy.

Conclusions 
�is study explores the application of FL in PM tasks, focusing 
on engine fault prediction using deep learning with LSTM cells. 
�e primary motivation behind this work was to address the 
challenges of maintaining data privacy while allowing 
collaboration between entities with data silos. Our main 
hypothesis was that implementing the FL framework would 
either maintain or improve the model performance on average 
when compared to the centralized learning approach. �e 
implementation of FL o�ers several key advantages in the 

context of predictive maintenance. Firstly, it preserves data 
privacy by ensuring that sensitive data remains localized on the 
devices where it is generated. �is is particularly important in 
industries like aerospace, where operational data can include 
proprietary and sensitive information. By minimizing the need 
for data centralization, FL reduces the risk of data breaches 
while allowing collaboration between entities that would 
otherwise not be able to collaborate. However, the study also 
highlights some challenges associated with the implementation 
of FL in predictive maintenance. Managing the FL process 
across multiple devices introduces complexity, particularly in 
coordinating updates and maintaining consistent model 
performance across diverse environments. Additionally, the 
federated approach can lead to biased subsets of data at each 
node, which may a�ect the generalization of the global model. 
Despite these challenges, the ability to collaborate across 
di�erent entities without sharing raw data opens new 
possibilities for improving the maintenance models 
industry-wide. �is collaborative approach can accelerate 
advancements in predictive maintenance technologies, 
bene�ting not just individual companies but the entire industry.
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Integrating privacy-preserving machine learning (ML) 
techniques—particularly Federated Learning (FL)—into 
Predictive Maintenance (PM), represents a signi�cant shi� in 
how industrial operations manage maintenance and data 
security. �is approach has broad implications for operational 
e�ciency, data privacy, regulatory compliance, and 
technological innovation. In FL, data are processed locally at the 
device or server level, drastically reducing the risk of exposing 
sensitive information during transmission or in a centralized 
database [1]. �is is crucial for industries where operational 
data may include proprietary or sensitive business information. 
By minimizing data centralization, federated learning decreases 
the vulnerability of systems to massive data breaches, a growing 
concern with the increasing incidences of cyber-attacks. �is 
work investigates the application of FL to PM tasks, focusing on 
the utilization of Long Short-Term Memory (LSTM) networks 
for predicting engine faults. Our research is motivated by the 
increasing demand for e�cient PM methodologies that can 
minimize downtime and reduce operational costs in various 
industries [2]. Privacy-preserving ML enables real-time data 
analysis directly on the machines where data is generated. �is 
allows for immediate identi�cation of potential issues, 
facilitating quicker responses to prevent failures. With the 

ability to analyze data across a network of devices without 
compromising privacy, organizations can optimize 
maintenance schedules based on predictive insights, rather 
than reactive or scheduled maintenance strategies. �is not 
only extends the life of equipment but also reduces 
unnecessary downtime. FL aligns with global data protection 
regulations towards treating privacy as a fundamental human 
right and establishing robust privacy protection mechanisms 
in the era of arti�cial intelligence [3,4]. �e latest update of the 
National Arti�cial Intelligence R&D Strategic Plan by the 
White House in 2023 underscores the signi�cance of FL in 
addressing data privacy and security concerns. 1�is plan 
elaborates on long-term investment strategies in responsible 
AI research, emphasizing the need for advancements in 
privacy-preserving data sharing and the ongoing challenges 
within FL. �e General Data Protection Regulation (GDPR)2 
in Europe also emphasizes data minimization, privacy by 
design, and the principle of processing data close to its source. 
Since FL does not require data to leave its source, it simpli�es 
compliance with laws that restrict cross-border data transfers, 
making it an attractive option for multinational corporations. 
In FL only essential model-related information is transmitted. 
�erefore, FL can signi�cantly reduce the costs associated 

with data transmission. In addition, by processing data locally 
and not requiring a central repository for vast amounts of raw 
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning, 
we re�ne our models’ accuracy, utilizing FL to distribute the 
computational load and enhance data privacy. �e results 
section provides an in-depth analysis of the models’ 
performance. Federated learning allows for the development of 
highly tailored models that learn from diverse data sources 
without compromising sensitive information. �is capability 
can drive innovation in PM technologies. Di�erent entities, 
even competitors, can collaborate to improve predictive models 
without sharing sensitive data, accelerating industry-wide 
advancements in maintenance strategies. Managing FL across 
many devices and locations introduces complexity, especially 
when coordinating updates and maintaining consistent model 
performance across diverse environments. Implementing an FL 
system requires sophisticated infrastructure and a shi� in 
traditional data management strategies, which might be 
challenging for some organizations. �is study encompasses a 
process validation section, where we underscore our 
collaboration with industry experts to ensure that our research 
objectives align with practical applications and that our �ndings 
remain relevant. �e use of privacy-preserving ML and FL in 
PM strengthens data security and enhances operational 
e�ciencies and compliance with regulatory norms. �ese 
technologies are setting new standards for how industries 
approach maintenance tasks while safeguarding critical data. As 
adoption grows, they could rede�ne best practices for asset 
management across various sectors, promising a future where 
PM is both more e�ective and inherently secure. In summary, 
this study delves into the application of federated learning for 
PM, presenting a structured approach to model development 
employing LSTM networks. Our �ndings aim to contribute to 
the ongoing discussion on the potential of FL in industrial 
applications, particularly in enhancing PM strategies to achieve 
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies: 
reactive and proactive. Both are widely used due to their 
di�erent advantages and disadvantages. Reactive maintenance 
describes the process of waiting for the life cycle of a part of an 
airplane subsystem to completely run out before repairing or 
replacing the faulty components [5]. Proactive maintenance 
describes the process of scheduling regular maintenance to 
repair/replace components before they become faulty [6]. �e 
advantage of reactive maintenance is that we can get 100% usage 
out of our parts, but the obvious disadvantage is that there is a 
high chance of component failure happening during �ights. 
�is can work for something non-critical like overhead cockpit 
lights, which would not force a �ight to be grounded if they 
failed in �ight. On the other hand, something like a 
High-Pressure Compressor (HPC) failure in �ight could prove 
disastrous. In these scenarios, it is better to perform proactive 
maintenance, where the disadvantage is that we lose some usage 
from our components, but we limit the number of in-�ight 
failures. In more recent years, with the advancements of ML, 
PM has become more popular as a third approach where we can 

use machine learning to schedule our maintenance for high-risk 
systems and still get close to 100% usage with a low-error model 
[7,8]. �ere are two main problems with this approach: small 
�eets with small sample sizes to train their PM models and large 
�eets unwilling to share their plentiful data with competitors 
due to privacy concerns. �e work done in this study applies to 
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE) 
researchers conducted engine degradation simulations using 
the Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and 
readily accessible on the NASA website, which can serve as a 
valuable resource for studying and analyzing engine 
degradation behaviors in various operational scenarios. �e 
data was converted to .csv and is stored on our GitHub 
repository.

 �e C-MAPSS dataset is an operational behavior dataset 
from di�erent engines. It o�ers a detailed look into the normal 
operational conditions of engines, including the presence of 
noise. Each data entry in the dataset contains 26 columns, 
encompassing information such as unit number, time cycles, 
three operational settings, and 21 sensor measurements (see 
Appendix A for details). �ese data snapshots, taken during 
individual operational cycles, provide valuable insights into the 
engine’s behavior. Table 1 provides detailed information about 
each node. Sensor measurements are observed to be 
contaminated with noise, which can potentially introduce 
inaccuracies and inconsistencies in the data analysis process 
[10].

 �e dataset is structured into four training and four testing 
datasets, each with varying numbers of trajectories, conditions, 
and fault modes. �e training sets are designed to showcase 
examples of faults that grow in magnitude until system failure 
occurs, providing valuable learning opportunities for predictive 
maintenance and fault detection. �e testing sets may end 
before system failure, allowing for the evaluation of predictive 
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify 
correlations between variables in a dataset, making them 
particularly useful for analyzing relationships among sensor 
measurements [11]. By plotting a heat map of the correlation 
matrix, patterns of correlation (both positive and negative) 
between pairs of variables can be easily visualized through color 
gradients. In the plot below, the lightest (white/tan) and darkest 
(black) colors indicate the highest linear correlation among 

variables. �e orange/red color indicates there is little to no 
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the 
strongest relationships consisting of SM2, SM3, SM4, SM7, 
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are 
correlated with almost all sensor measurement except SM6, 
SM9, and SM14. Regarding the trend, it seems like RUL has a 
similar correlation trend with SM7, SM12, SM20, and SM21, 
which can imply that RUL is mainly determined by SM7, SM12, 
SM20, and SM21. �e other interesting part is that OS1 and OS2 
do not have any relationship with the sensor measurements. In 
FD002, the RUL has no relationship with any of the sensor 
measurements. SM15 has the strongest relationship with every 
other sensor measurement, but it seems like it has the opposite 
trend compared to others. Every operational setting and sensor 
measurements are correlated with each other except for the 
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and 
OS2 are a�ected by most of the sensor measurements. In 
FD003, the heatmaps show similar trends and relationships 
among the operational setting and sensor measurements as in 
FD001. For FD004, the heatmaps show similar trends and 
relationships among the operational setting and sensor 
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor 
measurements from column variables 6 to 26, with unclear 
descriptions. �e operational settings are Mach Number (0 to 
0.90), altitude (sea level to 40,000 feet), and sea-level 
temperature (-60°F to 103°F). Upon further research, the labels 
were identi�ed for the sensor measurements with an 
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist 
of all data up until each failure, and testing sets have the cut-o� 
of some data before the failure. For example, in the training set 
for FD001, all rows with unit = 1 are the data from the �rst 

failure. �e last row of unit 1 has cycles = 192, which means the 
engine failed a�er 192 operational cycles. For the testing set, the 
last row of unit = 1 has cycle = 31, which is not when the failure 
happened. �e separate RUL �les contain the number of cycles 
until failure from the last sample for each test unit. In the case of 
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data 
privacy and security. It is particularly bene�cial in scenarios 
where data con�dentiality is crucial in a highly sensitive 
environment. �is approach was chosen because it helps 
prevent data leakage and reverse engineering of the data. 
However, the setup can lead to biased subsets of data at each 
node, as the training data is not shareable. To address this, a 
federated learning algorithm is employed. Initially, the server 
sends instructions to each node to train a local model. �ese 
local node models train on their respective data, and a�er a 
training round, they only transmit their updated weights to the 
central server. �e central server then aggregates these weights. 

 �ere are several aggregation methods available in 
Federated Learning (FL), each designed to address speci�c 

challenges and requirements, such as Federated 
Average (Fed Avg), FedProx, and personalized FL, 
etc. FedAvg is one of the most widely used methods, 
functioning as a generalized version of local-SGD, 
which performs a weighted average of local model 
parameters (weights) a�er a certain number of 
optimization steps are performed by each model 
[12]. �e weights for the average are determined as 
seen �t by the implementation. �e combined 
model is then transmitted back to the nodes, which 
use the updated model parameters as a starting 
point for another round of training [13]. �is 
process continues for multiple rounds until the 
global model converges. FedProx is a generalization 
of FedAvg and is primarily designed to address 
challenges associated with Independent and 
Identically Distributed (non-IID) data, which 
means data distributions vary signi�cantly across 
devices. �is method introduces a proximal term to 
the local optimization objective, which restricts the 

local updates to remain close to the global model. �is 
modi�cation improves stability and convergence in 
heterogeneous environments, making it particularly e�ective for 
applications with diverse data sources [14]. Another method is 
Personalized Federated Learning (FL), an alternative aggregation 
method that aims to train a model that depends on individual 
user preferences or behaviors [15]. Unlike FedAvg and FedProx, 
which aim to train a single global model, personalized FL allows 
for the creation of customized models for each user or device. 
�is is achieved by incorporating user-speci�c parameters or 
�ne-tuning the global model locally to better adapt to individual 
data distributions. Personalized FL is especially useful in 
scenarios where user data exhibits signi�cant variability, such as 
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is 
FedAvg, where the weight is the number of data samples 

available for training at each node. FedAvg is a well-established 
theoretical foundation approach and simpler to implement 
than the other approaches, which may require a more complex 
mechanism for tailoring models to individual users. 

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially 
the work done in, we decided that the best technique to model 
RUL is to use deep learning with LSTM neural network [8]. 
LSTM is a type of Recurrent Neural Network (RNN) that is 
suitable for modeling events that happen in sequence. LSTM 
avoids the common vanishing gradient problem by using gates 
to store or forget information as needed [16]. �is allows LSTM 
to learn long-term dependencies more e�ectively while having 
the ability to forget learned relationships that no longer bene�t 
the goal of minimizing loss. Each LSTM cell is composed of 
three gates implemented as sigmoid functions. Data xt comes 
into the cell, and becomes part of gt the candidate cell which 
also has previous memory information. �e ft (forget) gate 
decides what information should be forgotten; the it (input) 
gate decides what information should be stored, and the ot (output) gate decides what information should be the output 
from the cell. Hidden state St-1 and cell state Lt-1 contain the 
short and long-term memory states from the previous cells 
respectively. Figure 2 demonstrates the internal workings of a 
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning 
of our neural networks. �is module allows nearly limitless 
customization of model tuning with skilled use of Python. See 
the documentation of the Keras Tuner Python module for more 
information on the usage. Table 2 below shows the exact 
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine 
learning, there are three main loss functions: Mean Squared 
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2). 
Let N be the number of prediction samples, ȳ be the mean of the 
true values, yi and ŷⁱ be the true and predicted values at sample 
i, respectively. �ese metrics are de�ned as: 

              (1)

       (2)

       (3)

 MSE is a very punishing loss because it is non-linear with 
respect to error size. For example, an error of 10 is 100 times 
worse than an error of 1 because of the squaring. Additionally, 
the use of the square changes the units of the error to squared 
target units which may be di�cult to understand. Because of 
this, Root-MSE is a popular choice: RMSE=√MSE. can be good 
because it is recorded in the same units as the target variable 
(engine cycles in our case); however, it is linearly punishing and 
treats an error of qβ as being q times worse than an error of β 
which may not be good in certain cases such as jet engine 
failure. R2 is generally not chosen as a loss as it is di�cult to 
understand it as a loss function and easy to manipulate by 
adding more variables to our input and “curating” the validation 
data to have low variance. However, given two models with the 
same input variables evaluated on the same data, R2 can be a 
good “tie-breaker” for similar RMSE or MAE. For the reasons 
laid out above, we selected to use RMSE for the training and 
validation loss of our models, but we reported MAE as our 
second metric.

Model architecture
Derived from the work done in, we used a neural network 
architecture in Figure 3 that leverages the recurrent capabilities 
and robustness of LSTM cells with the approximation abilities 
of fully connected layers [8]. �e dropout layers and recurrent 
dropout in the LSTM are used to prevent over-�tting and 
improve generalization on unseen data. �e Gaussian noise 
layers are also generalization-aiding layers, as well as the 
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal 
performance in machine learning models, and it involves three 
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset 
have noise included. �e noise was purposefully added when 
the data was being generated [9]. Noise can be bad for machine 
learning models since the models may over-�t the noise of the 
training data, which has no real in�uence on the underlying 
phenomena. Filtering is a way to reduce the noise in the signals 
and improve the model generalization. We chose to use a 
median �lter, which is a sliding window �lter that suppresses 
noise and outliers, as illustrated in Figure 4 for Engine 11 of 
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided 
the signals based on each unit within each node. �en we tried 
kernel sizes k=3,5,7,9,11,…, Mk where Mk =      , si being the 
number of samples for unit i. �e best kernel for each unit was 
selected as the one that maximizes the linear correlation 
between the target (RUL) and the signal being analyzed. We 
then took the weighted geometric average of all the kernels and 
set it as the �nal kernel size to use. �e weight varied as the 
correlation and the number of samples for the unit. �e best was 
selected depending on the �nal model performance. 
 

�e second technique used is a simple “pruning” technique, 
which randomly removes some samples from the ends of the 
sequences of some of the time series in the training set. �is 
method is similar in execution to neural network pruning, 
though the goal is to make the data more representative as 
opposed to reducing complexity [19,20]. �is was done to 
mimic the test set time series, which did not run until failure. 
�e general idea was to prevent the model from over-�tting to a 
time series that starts at full health and ends at critical failure. 
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in 
vastly di�erent scales, such as data taken from di�erent sensors 
from di�erent jet engines in di�erent operating conditions [21]. 
�e di�ering scales and variances can cause the neural network 
to unfairly bias certain dimensions in the data due to 
undesirable reasons. We elected to use the popular z-score 
normalization technique, which takes all dimensions in the data 
and normalizes them to have approximately zero mean and 

standard deviation of 1. �is creates an even playing �eld when 
it comes to assigning neural network parameters during 
optimization. To use this technique, we simply turn each 
observation in each sample into a z-score. Let X be the set of all 
observations for a certain feature in one of our agents, we can 
�nd the z-score for the ith observation xi using:

   from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that 
deal with the degradation of parts, we decided to use some 
feature engineering techniques to add dimensions and new 
predictors to our data. �e �rst technique is a simple 
accumulation technique where we take the cumulative sum of 
certain signals throughout the degradation process. �e second 
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input 
space can add helpful dimensions to our dataset [22]. We took a 
similar approach by taking a simple, single-dimension, 
single-time-step signed change calculation to some of our 
features and added these as new features. �e single time step is 
because we do not know how long the “cycle” time dimension is. 
Given that most engines in the dataset fail within 200 cycles, it 
is safe to say each cycle is a relatively large time step, such as 
hours or even an entire �ight. �us, having too large of a 
window may not capture meaningful change. �e following 
snippet of code in Listing 2 demonstrates how the rate of change 
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3 
outline the optimal con�guration for the Long 
Short-Term Memory (LSTM) network used in 
predicting the Remaining Useful Life (RUL) of jet 
engines within a federated learning framework. �e 
model employs 4 LSTM layers and 4 dense layers, 
each with 64 units per layer, which balances model 
complexity and computational e�ciency. A batch 
size 32 was selected, enabling e�cient training 
while maintaining su�cient gradient updates. To 
prevent over�tting, a dropout rate of 0.1 and a 
recurrent dropout rate of 0.2 were applied, ensuring 
robust generalization to unseen data. �e learning 
rate was set to 0.001, a standard choice for achieving 
stable convergence during training. Additionally, 
Gaussian noise with a variance of 0.01 was 
introduced to improve the model's generalization 
by simulating slight variations in the input data. 
�ese hyperparameters were �ne-tuned through 
extensive experimentation using KerasTuner, 
ensuring optimal performance for the predictive 
maintenance task while preserving data privacy in a 
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several 
studies aggregated by Asif et al. and compared the results with 
our federated averaged model results [1]. We used statistical 
tests to compare these models. First, we ran two-tailed, equal 
means tests for all of them without selecting an α value 
beforehand. All the p-values were extremely low. �us, all of the 
equal means hypotheses were rejected, suggesting that our 
models either outperformed or underperformed against each 
study.

 We then performed greater-than-or-equal-to and 
less-than-or-equal-to one-tailed tests against each of the studies 
and recorded the results. Table 5 below summarizes the studies 
for which our model was statistically better on average. �e 
study number refers to the order in which the study appears in 
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set 
performance for our agents and our aggregated model. We also 

have graphical demonstrations in Figure 5 of how our model 
predicts the degradation of the di�erent faults over time, 
considering the di�erent conditions simulated within the 
di�erent agents.

Study Null Hypothesis (H0) t statistics Reject H0? 

13 µ ≤ 18.44 -14.35 No

3 µ ≤ 18.86 -23.70 No

5 µ ≤ 19.24 -32.37 No

10 µ ≤ 19.29 -33.39 No

2 µ ≤ 21.24 -77.50 No

Table 5. Statistical Model Comparison

Table 6. Con�dence Intervals for Mean Model Errors

Note: all p-values 0.99999999 or higher.

We also generated 95% con�dence intervals for the true mean 
error of our agent and aggregated models in Table 6.

Agent Name Lower Bound Upper Bound
FD001 13.10 13.44

FD002 20.55 21.16

FD003 13.82 13.98

FD004 22.90 23.48

Aggregated 17.71 17.90

Discussion
�e experiment results validated our hypothesis, as, on average, 
the FL approach either maintained or improved the model 
performance. While the test error across the individual agents 
showed signi�cant variance, the aggregated model 
demonstrated the ability to generalize and balance the error 
overall. �e variance in individual agent performance can be 
explained by the operating conditions detailed in Table 1. 
FD002 and FD004 are simulated with variance in six operating 
conditions (altitude, pressure, air speed, etc.), while FD001 and 
FD003 are simulated at sea level with no variance. �us, FD002 
and FD004 performed 1.25-1.6 times worse than the other 
agents. �e statistical analysis provided further insights into the 
e�ectiveness of the FL model. By conducting two-tailed equal 
means tests and greater-than-or-equal-to and less-than-or- 
equal-to one-tailed tests, we were able to compare our model’s 
performance against other studies. �e consistently low 
p-values and the rejection of null hypotheses in several cases 
suggest that our FL-based model either outperforms or is 
comparable to existing methods in predictive maintenance. �is 
statistical rigor con�rms that the federated approach not only 
preserves data privacy but also maintains, if not improves, 
model accuracy.

Conclusions 
�is study explores the application of FL in PM tasks, focusing 
on engine fault prediction using deep learning with LSTM cells. 
�e primary motivation behind this work was to address the 
challenges of maintaining data privacy while allowing 
collaboration between entities with data silos. Our main 
hypothesis was that implementing the FL framework would 
either maintain or improve the model performance on average 
when compared to the centralized learning approach. �e 
implementation of FL o�ers several key advantages in the 

context of predictive maintenance. Firstly, it preserves data 
privacy by ensuring that sensitive data remains localized on the 
devices where it is generated. �is is particularly important in 
industries like aerospace, where operational data can include 
proprietary and sensitive information. By minimizing the need 
for data centralization, FL reduces the risk of data breaches 
while allowing collaboration between entities that would 
otherwise not be able to collaborate. However, the study also 
highlights some challenges associated with the implementation 
of FL in predictive maintenance. Managing the FL process 
across multiple devices introduces complexity, particularly in 
coordinating updates and maintaining consistent model 
performance across diverse environments. Additionally, the 
federated approach can lead to biased subsets of data at each 
node, which may a�ect the generalization of the global model. 
Despite these challenges, the ability to collaborate across 
di�erent entities without sharing raw data opens new 
possibilities for improving the maintenance models 
industry-wide. �is collaborative approach can accelerate 
advancements in predictive maintenance technologies, 
bene�ting not just individual companies but the entire industry.
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Integrating privacy-preserving machine learning (ML) 
techniques—particularly Federated Learning (FL)—into 
Predictive Maintenance (PM), represents a signi�cant shi� in 
how industrial operations manage maintenance and data 
security. �is approach has broad implications for operational 
e�ciency, data privacy, regulatory compliance, and 
technological innovation. In FL, data are processed locally at the 
device or server level, drastically reducing the risk of exposing 
sensitive information during transmission or in a centralized 
database [1]. �is is crucial for industries where operational 
data may include proprietary or sensitive business information. 
By minimizing data centralization, federated learning decreases 
the vulnerability of systems to massive data breaches, a growing 
concern with the increasing incidences of cyber-attacks. �is 
work investigates the application of FL to PM tasks, focusing on 
the utilization of Long Short-Term Memory (LSTM) networks 
for predicting engine faults. Our research is motivated by the 
increasing demand for e�cient PM methodologies that can 
minimize downtime and reduce operational costs in various 
industries [2]. Privacy-preserving ML enables real-time data 
analysis directly on the machines where data is generated. �is 
allows for immediate identi�cation of potential issues, 
facilitating quicker responses to prevent failures. With the 

ability to analyze data across a network of devices without 
compromising privacy, organizations can optimize 
maintenance schedules based on predictive insights, rather 
than reactive or scheduled maintenance strategies. �is not 
only extends the life of equipment but also reduces 
unnecessary downtime. FL aligns with global data protection 
regulations towards treating privacy as a fundamental human 
right and establishing robust privacy protection mechanisms 
in the era of arti�cial intelligence [3,4]. �e latest update of the 
National Arti�cial Intelligence R&D Strategic Plan by the 
White House in 2023 underscores the signi�cance of FL in 
addressing data privacy and security concerns. 1�is plan 
elaborates on long-term investment strategies in responsible 
AI research, emphasizing the need for advancements in 
privacy-preserving data sharing and the ongoing challenges 
within FL. �e General Data Protection Regulation (GDPR)2 
in Europe also emphasizes data minimization, privacy by 
design, and the principle of processing data close to its source. 
Since FL does not require data to leave its source, it simpli�es 
compliance with laws that restrict cross-border data transfers, 
making it an attractive option for multinational corporations. 
In FL only essential model-related information is transmitted. 
�erefore, FL can signi�cantly reduce the costs associated 

with data transmission. In addition, by processing data locally 
and not requiring a central repository for vast amounts of raw 
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning, 
we re�ne our models’ accuracy, utilizing FL to distribute the 
computational load and enhance data privacy. �e results 
section provides an in-depth analysis of the models’ 
performance. Federated learning allows for the development of 
highly tailored models that learn from diverse data sources 
without compromising sensitive information. �is capability 
can drive innovation in PM technologies. Di�erent entities, 
even competitors, can collaborate to improve predictive models 
without sharing sensitive data, accelerating industry-wide 
advancements in maintenance strategies. Managing FL across 
many devices and locations introduces complexity, especially 
when coordinating updates and maintaining consistent model 
performance across diverse environments. Implementing an FL 
system requires sophisticated infrastructure and a shi� in 
traditional data management strategies, which might be 
challenging for some organizations. �is study encompasses a 
process validation section, where we underscore our 
collaboration with industry experts to ensure that our research 
objectives align with practical applications and that our �ndings 
remain relevant. �e use of privacy-preserving ML and FL in 
PM strengthens data security and enhances operational 
e�ciencies and compliance with regulatory norms. �ese 
technologies are setting new standards for how industries 
approach maintenance tasks while safeguarding critical data. As 
adoption grows, they could rede�ne best practices for asset 
management across various sectors, promising a future where 
PM is both more e�ective and inherently secure. In summary, 
this study delves into the application of federated learning for 
PM, presenting a structured approach to model development 
employing LSTM networks. Our �ndings aim to contribute to 
the ongoing discussion on the potential of FL in industrial 
applications, particularly in enhancing PM strategies to achieve 
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies: 
reactive and proactive. Both are widely used due to their 
di�erent advantages and disadvantages. Reactive maintenance 
describes the process of waiting for the life cycle of a part of an 
airplane subsystem to completely run out before repairing or 
replacing the faulty components [5]. Proactive maintenance 
describes the process of scheduling regular maintenance to 
repair/replace components before they become faulty [6]. �e 
advantage of reactive maintenance is that we can get 100% usage 
out of our parts, but the obvious disadvantage is that there is a 
high chance of component failure happening during �ights. 
�is can work for something non-critical like overhead cockpit 
lights, which would not force a �ight to be grounded if they 
failed in �ight. On the other hand, something like a 
High-Pressure Compressor (HPC) failure in �ight could prove 
disastrous. In these scenarios, it is better to perform proactive 
maintenance, where the disadvantage is that we lose some usage 
from our components, but we limit the number of in-�ight 
failures. In more recent years, with the advancements of ML, 
PM has become more popular as a third approach where we can 

use machine learning to schedule our maintenance for high-risk 
systems and still get close to 100% usage with a low-error model 
[7,8]. �ere are two main problems with this approach: small 
�eets with small sample sizes to train their PM models and large 
�eets unwilling to share their plentiful data with competitors 
due to privacy concerns. �e work done in this study applies to 
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE) 
researchers conducted engine degradation simulations using 
the Commercial Modular Aero-Propulsion System Simulation 
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and 
readily accessible on the NASA website, which can serve as a 
valuable resource for studying and analyzing engine 
degradation behaviors in various operational scenarios. �e 
data was converted to .csv and is stored on our GitHub 
repository.

 �e C-MAPSS dataset is an operational behavior dataset 
from di�erent engines. It o�ers a detailed look into the normal 
operational conditions of engines, including the presence of 
noise. Each data entry in the dataset contains 26 columns, 
encompassing information such as unit number, time cycles, 
three operational settings, and 21 sensor measurements (see 
Appendix A for details). �ese data snapshots, taken during 
individual operational cycles, provide valuable insights into the 
engine’s behavior. Table 1 provides detailed information about 
each node. Sensor measurements are observed to be 
contaminated with noise, which can potentially introduce 
inaccuracies and inconsistencies in the data analysis process 
[10].

 �e dataset is structured into four training and four testing 
datasets, each with varying numbers of trajectories, conditions, 
and fault modes. �e training sets are designed to showcase 
examples of faults that grow in magnitude until system failure 
occurs, providing valuable learning opportunities for predictive 
maintenance and fault detection. �e testing sets may end 
before system failure, allowing for the evaluation of predictive 
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify 
correlations between variables in a dataset, making them 
particularly useful for analyzing relationships among sensor 
measurements [11]. By plotting a heat map of the correlation 
matrix, patterns of correlation (both positive and negative) 
between pairs of variables can be easily visualized through color 
gradients. In the plot below, the lightest (white/tan) and darkest 
(black) colors indicate the highest linear correlation among 

variables. �e orange/red color indicates there is little to no 
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the 
strongest relationships consisting of SM2, SM3, SM4, SM7, 
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are 
correlated with almost all sensor measurement except SM6, 
SM9, and SM14. Regarding the trend, it seems like RUL has a 
similar correlation trend with SM7, SM12, SM20, and SM21, 
which can imply that RUL is mainly determined by SM7, SM12, 
SM20, and SM21. �e other interesting part is that OS1 and OS2 
do not have any relationship with the sensor measurements. In 
FD002, the RUL has no relationship with any of the sensor 
measurements. SM15 has the strongest relationship with every 
other sensor measurement, but it seems like it has the opposite 
trend compared to others. Every operational setting and sensor 
measurements are correlated with each other except for the 
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and 
OS2 are a�ected by most of the sensor measurements. In 
FD003, the heatmaps show similar trends and relationships 
among the operational setting and sensor measurements as in 
FD001. For FD004, the heatmaps show similar trends and 
relationships among the operational setting and sensor 
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor 
measurements from column variables 6 to 26, with unclear 
descriptions. �e operational settings are Mach Number (0 to 
0.90), altitude (sea level to 40,000 feet), and sea-level 
temperature (-60°F to 103°F). Upon further research, the labels 
were identi�ed for the sensor measurements with an 
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist 
of all data up until each failure, and testing sets have the cut-o� 
of some data before the failure. For example, in the training set 
for FD001, all rows with unit = 1 are the data from the �rst 

failure. �e last row of unit 1 has cycles = 192, which means the 
engine failed a�er 192 operational cycles. For the testing set, the 
last row of unit = 1 has cycle = 31, which is not when the failure 
happened. �e separate RUL �les contain the number of cycles 
until failure from the last sample for each test unit. In the case of 
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data 
privacy and security. It is particularly bene�cial in scenarios 
where data con�dentiality is crucial in a highly sensitive 
environment. �is approach was chosen because it helps 
prevent data leakage and reverse engineering of the data. 
However, the setup can lead to biased subsets of data at each 
node, as the training data is not shareable. To address this, a 
federated learning algorithm is employed. Initially, the server 
sends instructions to each node to train a local model. �ese 
local node models train on their respective data, and a�er a 
training round, they only transmit their updated weights to the 
central server. �e central server then aggregates these weights. 

 �ere are several aggregation methods available in 
Federated Learning (FL), each designed to address speci�c 

challenges and requirements, such as Federated 
Average (Fed Avg), FedProx, and personalized FL, 
etc. FedAvg is one of the most widely used methods, 
functioning as a generalized version of local-SGD, 
which performs a weighted average of local model 
parameters (weights) a�er a certain number of 
optimization steps are performed by each model 
[12]. �e weights for the average are determined as 
seen �t by the implementation. �e combined 
model is then transmitted back to the nodes, which 
use the updated model parameters as a starting 
point for another round of training [13]. �is 
process continues for multiple rounds until the 
global model converges. FedProx is a generalization 
of FedAvg and is primarily designed to address 
challenges associated with Independent and 
Identically Distributed (non-IID) data, which 
means data distributions vary signi�cantly across 
devices. �is method introduces a proximal term to 
the local optimization objective, which restricts the 

local updates to remain close to the global model. �is 
modi�cation improves stability and convergence in 
heterogeneous environments, making it particularly e�ective for 
applications with diverse data sources [14]. Another method is 
Personalized Federated Learning (FL), an alternative aggregation 
method that aims to train a model that depends on individual 
user preferences or behaviors [15]. Unlike FedAvg and FedProx, 
which aim to train a single global model, personalized FL allows 
for the creation of customized models for each user or device. 
�is is achieved by incorporating user-speci�c parameters or 
�ne-tuning the global model locally to better adapt to individual 
data distributions. Personalized FL is especially useful in 
scenarios where user data exhibits signi�cant variability, such as 
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is 
FedAvg, where the weight is the number of data samples 

available for training at each node. FedAvg is a well-established 
theoretical foundation approach and simpler to implement 
than the other approaches, which may require a more complex 
mechanism for tailoring models to individual users. 

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially 
the work done in, we decided that the best technique to model 
RUL is to use deep learning with LSTM neural network [8]. 
LSTM is a type of Recurrent Neural Network (RNN) that is 
suitable for modeling events that happen in sequence. LSTM 
avoids the common vanishing gradient problem by using gates 
to store or forget information as needed [16]. �is allows LSTM 
to learn long-term dependencies more e�ectively while having 
the ability to forget learned relationships that no longer bene�t 
the goal of minimizing loss. Each LSTM cell is composed of 
three gates implemented as sigmoid functions. Data xt comes 
into the cell, and becomes part of gt the candidate cell which 
also has previous memory information. �e ft (forget) gate 
decides what information should be forgotten; the it (input) 
gate decides what information should be stored, and the ot (output) gate decides what information should be the output 
from the cell. Hidden state St-1 and cell state Lt-1 contain the 
short and long-term memory states from the previous cells 
respectively. Figure 2 demonstrates the internal workings of a 
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning 
of our neural networks. �is module allows nearly limitless 
customization of model tuning with skilled use of Python. See 
the documentation of the Keras Tuner Python module for more 
information on the usage. Table 2 below shows the exact 
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine 
learning, there are three main loss functions: Mean Squared 
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2). 
Let N be the number of prediction samples, ȳ be the mean of the 
true values, yi and ŷⁱ be the true and predicted values at sample 
i, respectively. �ese metrics are de�ned as: 

              (1)

       (2)

       (3)

 MSE is a very punishing loss because it is non-linear with 
respect to error size. For example, an error of 10 is 100 times 
worse than an error of 1 because of the squaring. Additionally, 
the use of the square changes the units of the error to squared 
target units which may be di�cult to understand. Because of 
this, Root-MSE is a popular choice: RMSE=√MSE. can be good 
because it is recorded in the same units as the target variable 
(engine cycles in our case); however, it is linearly punishing and 
treats an error of qβ as being q times worse than an error of β 
which may not be good in certain cases such as jet engine 
failure. R2 is generally not chosen as a loss as it is di�cult to 
understand it as a loss function and easy to manipulate by 
adding more variables to our input and “curating” the validation 
data to have low variance. However, given two models with the 
same input variables evaluated on the same data, R2 can be a 
good “tie-breaker” for similar RMSE or MAE. For the reasons 
laid out above, we selected to use RMSE for the training and 
validation loss of our models, but we reported MAE as our 
second metric.

Model architecture
Derived from the work done in, we used a neural network 
architecture in Figure 3 that leverages the recurrent capabilities 
and robustness of LSTM cells with the approximation abilities 
of fully connected layers [8]. �e dropout layers and recurrent 
dropout in the LSTM are used to prevent over-�tting and 
improve generalization on unseen data. �e Gaussian noise 
layers are also generalization-aiding layers, as well as the 
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal 
performance in machine learning models, and it involves three 
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset 
have noise included. �e noise was purposefully added when 
the data was being generated [9]. Noise can be bad for machine 
learning models since the models may over-�t the noise of the 
training data, which has no real in�uence on the underlying 
phenomena. Filtering is a way to reduce the noise in the signals 
and improve the model generalization. We chose to use a 
median �lter, which is a sliding window �lter that suppresses 
noise and outliers, as illustrated in Figure 4 for Engine 11 of 
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided 
the signals based on each unit within each node. �en we tried 
kernel sizes k=3,5,7,9,11,…, Mk where Mk =      , si being the 
number of samples for unit i. �e best kernel for each unit was 
selected as the one that maximizes the linear correlation 
between the target (RUL) and the signal being analyzed. We 
then took the weighted geometric average of all the kernels and 
set it as the �nal kernel size to use. �e weight varied as the 
correlation and the number of samples for the unit. �e best was 
selected depending on the �nal model performance. 
 

�e second technique used is a simple “pruning” technique, 
which randomly removes some samples from the ends of the 
sequences of some of the time series in the training set. �is 
method is similar in execution to neural network pruning, 
though the goal is to make the data more representative as 
opposed to reducing complexity [19,20]. �is was done to 
mimic the test set time series, which did not run until failure. 
�e general idea was to prevent the model from over-�tting to a 
time series that starts at full health and ends at critical failure. 
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in 
vastly di�erent scales, such as data taken from di�erent sensors 
from di�erent jet engines in di�erent operating conditions [21]. 
�e di�ering scales and variances can cause the neural network 
to unfairly bias certain dimensions in the data due to 
undesirable reasons. We elected to use the popular z-score 
normalization technique, which takes all dimensions in the data 
and normalizes them to have approximately zero mean and 

standard deviation of 1. �is creates an even playing �eld when 
it comes to assigning neural network parameters during 
optimization. To use this technique, we simply turn each 
observation in each sample into a z-score. Let X be the set of all 
observations for a certain feature in one of our agents, we can 
�nd the z-score for the ith observation xi using:

   from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that 
deal with the degradation of parts, we decided to use some 
feature engineering techniques to add dimensions and new 
predictors to our data. �e �rst technique is a simple 
accumulation technique where we take the cumulative sum of 
certain signals throughout the degradation process. �e second 
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input 
space can add helpful dimensions to our dataset [22]. We took a 
similar approach by taking a simple, single-dimension, 
single-time-step signed change calculation to some of our 
features and added these as new features. �e single time step is 
because we do not know how long the “cycle” time dimension is. 
Given that most engines in the dataset fail within 200 cycles, it 
is safe to say each cycle is a relatively large time step, such as 
hours or even an entire �ight. �us, having too large of a 
window may not capture meaningful change. �e following 
snippet of code in Listing 2 demonstrates how the rate of change 
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3 
outline the optimal con�guration for the Long 
Short-Term Memory (LSTM) network used in 
predicting the Remaining Useful Life (RUL) of jet 
engines within a federated learning framework. �e 
model employs 4 LSTM layers and 4 dense layers, 
each with 64 units per layer, which balances model 
complexity and computational e�ciency. A batch 
size 32 was selected, enabling e�cient training 
while maintaining su�cient gradient updates. To 
prevent over�tting, a dropout rate of 0.1 and a 
recurrent dropout rate of 0.2 were applied, ensuring 
robust generalization to unseen data. �e learning 
rate was set to 0.001, a standard choice for achieving 
stable convergence during training. Additionally, 
Gaussian noise with a variance of 0.01 was 
introduced to improve the model's generalization 
by simulating slight variations in the input data. 
�ese hyperparameters were �ne-tuned through 
extensive experimentation using KerasTuner, 
ensuring optimal performance for the predictive 
maintenance task while preserving data privacy in a 
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several 
studies aggregated by Asif et al. and compared the results with 
our federated averaged model results [1]. We used statistical 
tests to compare these models. First, we ran two-tailed, equal 
means tests for all of them without selecting an α value 
beforehand. All the p-values were extremely low. �us, all of the 
equal means hypotheses were rejected, suggesting that our 
models either outperformed or underperformed against each 
study.

 We then performed greater-than-or-equal-to and 
less-than-or-equal-to one-tailed tests against each of the studies 
and recorded the results. Table 5 below summarizes the studies 
for which our model was statistically better on average. �e 
study number refers to the order in which the study appears in 
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set 
performance for our agents and our aggregated model. We also 

have graphical demonstrations in Figure 5 of how our model 
predicts the degradation of the di�erent faults over time, 
considering the di�erent conditions simulated within the 
di�erent agents.

We also generated 95% con�dence intervals for the true mean 
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average, 
the FL approach either maintained or improved the model 
performance. While the test error across the individual agents 
showed signi�cant variance, the aggregated model 
demonstrated the ability to generalize and balance the error 
overall. �e variance in individual agent performance can be 
explained by the operating conditions detailed in Table 1. 
FD002 and FD004 are simulated with variance in six operating 
conditions (altitude, pressure, air speed, etc.), while FD001 and 
FD003 are simulated at sea level with no variance. �us, FD002 
and FD004 performed 1.25-1.6 times worse than the other 
agents. �e statistical analysis provided further insights into the 
e�ectiveness of the FL model. By conducting two-tailed equal 
means tests and greater-than-or-equal-to and less-than-or- 
equal-to one-tailed tests, we were able to compare our model’s 
performance against other studies. �e consistently low 
p-values and the rejection of null hypotheses in several cases 
suggest that our FL-based model either outperforms or is 
comparable to existing methods in predictive maintenance. �is 
statistical rigor con�rms that the federated approach not only 
preserves data privacy but also maintains, if not improves, 
model accuracy.

Conclusions 
�is study explores the application of FL in PM tasks, focusing 
on engine fault prediction using deep learning with LSTM cells. 
�e primary motivation behind this work was to address the 
challenges of maintaining data privacy while allowing 
collaboration between entities with data silos. Our main 
hypothesis was that implementing the FL framework would 
either maintain or improve the model performance on average 
when compared to the centralized learning approach. �e 
implementation of FL o�ers several key advantages in the 

context of predictive maintenance. Firstly, it preserves data 
privacy by ensuring that sensitive data remains localized on the 
devices where it is generated. �is is particularly important in 
industries like aerospace, where operational data can include 
proprietary and sensitive information. By minimizing the need 
for data centralization, FL reduces the risk of data breaches 
while allowing collaboration between entities that would 
otherwise not be able to collaborate. However, the study also 
highlights some challenges associated with the implementation 
of FL in predictive maintenance. Managing the FL process 
across multiple devices introduces complexity, particularly in 
coordinating updates and maintaining consistent model 
performance across diverse environments. Additionally, the 
federated approach can lead to biased subsets of data at each 
node, which may a�ect the generalization of the global model. 
Despite these challenges, the ability to collaborate across 
di�erent entities without sharing raw data opens new 
possibilities for improving the maintenance models 
industry-wide. �is collaborative approach can accelerate 
advancements in predictive maintenance technologies, 
bene�ting not just individual companies but the entire industry.
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