
Using federated machine learning in predictive maintenance of jet engines

NARRATIVES

Asaph Matheus Barbosa¹*, Thao Vy Nhat Ngo¹, Elaheh Jafarigol¹, Theodore B. Trafalis¹, Emuobosa P.
Ojoboh¹
Department of Data Science, University of Oklahoma, Norman, USA

Introduction

© 2025 The Author(s). Published by Reseapro Journals. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Correspondence: Mr. Asaph Matheus Barbosa, Department of Data Science, University of Oklahoma, Norman, USA. e-mail: asaphmatheus.barbosa@gmail.com

The aim of this research is to predict the Remaining Useful Life (RUL) of turbine jet engines using a
federated machine learning framework, ensuring data privacy and security while maintaining high
predictive accuracy. Federated Learning (FL) enables multiple edge devices/nodes or servers to
collaboratively train a shared model without sharing sensitive data, making it ideal for industries like
aviation, where data con�dentiality is paramount. The proposed system employs Long Short-Term
Memory (LSTM) networks, a type of recurrent neural network, to model the complex temporal
relationships and degradation patterns in engine data. By leveraging decentralized computation, the
framework allows models to be trained locally on each device, with learned weights aggregated at a
central server using the Federated Averaging (FedAvg) algorithm. The study utilizes the C-MAPSS
(Commercial Modular Aero-Propulsion System Simulation) dataset, a publicly available resource from
NASA, which simulates engine degradation under various operational conditions. The dataset
includes time-series data from 21 sensors and three operational settings, providing a comprehensive
foundation for analyzing fault progression and failure modes. Computational results demonstrate the
e�ectiveness of the proposed approach; with validation and test Root Mean Squared Error (RMSE)
metrics range from 13.811 to 22.998 across di�erent operational scenarios. The aggregated FL model
achieved an RMSE of 17.899, showcasing its ability to generalize across diverse conditions. By
accurately predicting the RUL of jet engines, this approach enables optimized maintenance
schedules, reduced downtime, and improved operational e�ciency, ultimately leading to cost
savings and enhanced performance in the aviation industry. This research highlights the advantages
of federated learning in handling sensitive data while achieving robust predictive performance for
critical industrial applications.

ABSTRACT Federated learning;
predictive maintenance;
Privacy; Model accuracy;
Long-short term memory

KEYWORDS

Received 19 February 2025;
Revised 19 March 2025;
Accepted 27 March 2025

ARTICLE HISTORY

Integrating privacy-preserving machine learning (ML)
techniques—particularly Federated Learning (FL)—into
Predictive Maintenance (PM), represents a signi�cant shi� in
how industrial operations manage maintenance and data
security. �is approach has broad implications for operational
e�ciency, data privacy, regulatory compliance, and
technological innovation. In FL, data are processed locally at the
device or server level, drastically reducing the risk of exposing
sensitive information during transmission or in a centralized
database [1]. �is is crucial for industries where operational
data may include proprietary or sensitive business information.
By minimizing data centralization, federated learning decreases
the vulnerability of systems to massive data breaches, a growing
concern with the increasing incidences of cyber-attacks. �is
work investigates the application of FL to PM tasks, focusing on
the utilization of Long Short-Term Memory (LSTM) networks
for predicting engine faults. Our research is motivated by the
increasing demand for e�cient PM methodologies that can
minimize downtime and reduce operational costs in various
industries [2]. Privacy-preserving ML enables real-time data
analysis directly on the machines where data is generated. �is
allows for immediate identi�cation of potential issues,
facilitating quicker responses to prevent failures. With the

ability to analyze data across a network of devices without
compromising privacy, organizations can optimize
maintenance schedules based on predictive insights, rather
than reactive or scheduled maintenance strategies. �is not
only extends the life of equipment but also reduces
unnecessary downtime. FL aligns with global data protection
regulations towards treating privacy as a fundamental human
right and establishing robust privacy protection mechanisms
in the era of arti�cial intelligence [3,4]. �e latest update of the
National Arti�cial Intelligence R&D Strategic Plan by the
White House in 2023 underscores the signi�cance of FL in
addressing data privacy and security concerns. 1�is plan
elaborates on long-term investment strategies in responsible
AI research, emphasizing the need for advancements in
privacy-preserving data sharing and the ongoing challenges
within FL. �e General Data Protection Regulation (GDPR)2
in Europe also emphasizes data minimization, privacy by
design, and the principle of processing data close to its source.
Since FL does not require data to leave its source, it simpli�es
compliance with laws that restrict cross-border data transfers,
making it an attractive option for multinational corporations.
In FL only essential model-related information is transmitted.
�erefore, FL can signi�cantly reduce the costs associated

with data transmission. In addition, by processing data locally
and not requiring a central repository for vast amounts of raw
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning,
we re�ne our models’ accuracy, utilizing FL to distribute the
computational load and enhance data privacy. �e results
section provides an in-depth analysis of the models’
performance. Federated learning allows for the development of
highly tailored models that learn from diverse data sources
without compromising sensitive information. �is capability
can drive innovation in PM technologies. Di�erent entities,
even competitors, can collaborate to improve predictive models
without sharing sensitive data, accelerating industry-wide
advancements in maintenance strategies. Managing FL across
many devices and locations introduces complexity, especially
when coordinating updates and maintaining consistent model
performance across diverse environments. Implementing an FL
system requires sophisticated infrastructure and a shi� in
traditional data management strategies, which might be
challenging for some organizations. �is study encompasses a
process validation section, where we underscore our
collaboration with industry experts to ensure that our research
objectives align with practical applications and that our �ndings
remain relevant. �e use of privacy-preserving ML and FL in
PM strengthens data security and enhances operational
e�ciencies and compliance with regulatory norms. �ese
technologies are setting new standards for how industries
approach maintenance tasks while safeguarding critical data. As
adoption grows, they could rede�ne best practices for asset
management across various sectors, promising a future where
PM is both more e�ective and inherently secure. In summary,
this study delves into the application of federated learning for
PM, presenting a structured approach to model development
employing LSTM networks. Our �ndings aim to contribute to
the ongoing discussion on the potential of FL in industrial
applications, particularly in enhancing PM strategies to achieve
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies:
reactive and proactive. Both are widely used due to their
di�erent advantages and disadvantages. Reactive maintenance
describes the process of waiting for the life cycle of a part of an
airplane subsystem to completely run out before repairing or
replacing the faulty components [5]. Proactive maintenance
describes the process of scheduling regular maintenance to
repair/replace components before they become faulty [6]. �e
advantage of reactive maintenance is that we can get 100% usage
out of our parts, but the obvious disadvantage is that there is a
high chance of component failure happening during �ights.
�is can work for something non-critical like overhead cockpit
lights, which would not force a �ight to be grounded if they
failed in �ight. On the other hand, something like a
High-Pressure Compressor (HPC) failure in �ight could prove
disastrous. In these scenarios, it is better to perform proactive
maintenance, where the disadvantage is that we lose some usage
from our components, but we limit the number of in-�ight
failures. In more recent years, with the advancements of ML,
PM has become more popular as a third approach where we can

use machine learning to schedule our maintenance for high-risk
systems and still get close to 100% usage with a low-error model
[7,8]. �ere are two main problems with this approach: small
�eets with small sample sizes to train their PM models and large
�eets unwilling to share their plentiful data with competitors
due to privacy concerns. �e work done in this study applies to
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE)
researchers conducted engine degradation simulations using
the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and
readily accessible on the NASA website, which can serve as a
valuable resource for studying and analyzing engine
degradation behaviors in various operational scenarios. �e
data was converted to .csv and is stored on our GitHub
repository.

 �e C-MAPSS dataset is an operational behavior dataset
from di�erent engines. It o�ers a detailed look into the normal
operational conditions of engines, including the presence of
noise. Each data entry in the dataset contains 26 columns,
encompassing information such as unit number, time cycles,
three operational settings, and 21 sensor measurements (see
Appendix A for details). �ese data snapshots, taken during
individual operational cycles, provide valuable insights into the
engine’s behavior. Table 1 provides detailed information about
each node. Sensor measurements are observed to be
contaminated with noise, which can potentially introduce
inaccuracies and inconsistencies in the data analysis process
[10].

 �e dataset is structured into four training and four testing
datasets, each with varying numbers of trajectories, conditions,
and fault modes. �e training sets are designed to showcase
examples of faults that grow in magnitude until system failure
occurs, providing valuable learning opportunities for predictive
maintenance and fault detection. �e testing sets may end
before system failure, allowing for the evaluation of predictive
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify
correlations between variables in a dataset, making them
particularly useful for analyzing relationships among sensor
measurements [11]. By plotting a heat map of the correlation
matrix, patterns of correlation (both positive and negative)
between pairs of variables can be easily visualized through color
gradients. In the plot below, the lightest (white/tan) and darkest
(black) colors indicate the highest linear correlation among

variables. �e orange/red color indicates there is little to no
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the
strongest relationships consisting of SM2, SM3, SM4, SM7,
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are
correlated with almost all sensor measurement except SM6,
SM9, and SM14. Regarding the trend, it seems like RUL has a
similar correlation trend with SM7, SM12, SM20, and SM21,
which can imply that RUL is mainly determined by SM7, SM12,
SM20, and SM21. �e other interesting part is that OS1 and OS2
do not have any relationship with the sensor measurements. In
FD002, the RUL has no relationship with any of the sensor
measurements. SM15 has the strongest relationship with every
other sensor measurement, but it seems like it has the opposite
trend compared to others. Every operational setting and sensor
measurements are correlated with each other except for the
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and
OS2 are a�ected by most of the sensor measurements. In
FD003, the heatmaps show similar trends and relationships
among the operational setting and sensor measurements as in
FD001. For FD004, the heatmaps show similar trends and
relationships among the operational setting and sensor
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor
measurements from column variables 6 to 26, with unclear
descriptions. �e operational settings are Mach Number (0 to
0.90), altitude (sea level to 40,000 feet), and sea-level
temperature (-60°F to 103°F). Upon further research, the labels
were identi�ed for the sensor measurements with an
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist
of all data up until each failure, and testing sets have the cut-o�
of some data before the failure. For example, in the training set
for FD001, all rows with unit = 1 are the data from the �rst

failure. �e last row of unit 1 has cycles = 192, which means the
engine failed a�er 192 operational cycles. For the testing set, the
last row of unit = 1 has cycle = 31, which is not when the failure
happened. �e separate RUL �les contain the number of cycles
until failure from the last sample for each test unit. In the case of
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data
privacy and security. It is particularly bene�cial in scenarios
where data con�dentiality is crucial in a highly sensitive
environment. �is approach was chosen because it helps
prevent data leakage and reverse engineering of the data.
However, the setup can lead to biased subsets of data at each
node, as the training data is not shareable. To address this, a
federated learning algorithm is employed. Initially, the server
sends instructions to each node to train a local model. �ese
local node models train on their respective data, and a�er a
training round, they only transmit their updated weights to the
central server. �e central server then aggregates these weights.

 �ere are several aggregation methods available in
Federated Learning (FL), each designed to address speci�c

challenges and requirements, such as Federated
Average (Fed Avg), FedProx, and personalized FL,
etc. FedAvg is one of the most widely used methods,
functioning as a generalized version of local-SGD,
which performs a weighted average of local model
parameters (weights) a�er a certain number of
optimization steps are performed by each model
[12]. �e weights for the average are determined as
seen �t by the implementation. �e combined
model is then transmitted back to the nodes, which
use the updated model parameters as a starting
point for another round of training [13]. �is
process continues for multiple rounds until the
global model converges. FedProx is a generalization
of FedAvg and is primarily designed to address
challenges associated with Independent and
Identically Distributed (non-IID) data, which
means data distributions vary signi�cantly across
devices. �is method introduces a proximal term to
the local optimization objective, which restricts the

local updates to remain close to the global model. �is
modi�cation improves stability and convergence in
heterogeneous environments, making it particularly e�ective for
applications with diverse data sources [14]. Another method is
Personalized Federated Learning (FL), an alternative aggregation
method that aims to train a model that depends on individual
user preferences or behaviors [15]. Unlike FedAvg and FedProx,
which aim to train a single global model, personalized FL allows
for the creation of customized models for each user or device.
�is is achieved by incorporating user-speci�c parameters or
�ne-tuning the global model locally to better adapt to individual
data distributions. Personalized FL is especially useful in
scenarios where user data exhibits signi�cant variability, such as
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is
FedAvg, where the weight is the number of data samples

available for training at each node. FedAvg is a well-established
theoretical foundation approach and simpler to implement
than the other approaches, which may require a more complex
mechanism for tailoring models to individual users.

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially
the work done in, we decided that the best technique to model
RUL is to use deep learning with LSTM neural network [8].
LSTM is a type of Recurrent Neural Network (RNN) that is
suitable for modeling events that happen in sequence. LSTM
avoids the common vanishing gradient problem by using gates
to store or forget information as needed [16]. �is allows LSTM
to learn long-term dependencies more e�ectively while having
the ability to forget learned relationships that no longer bene�t
the goal of minimizing loss. Each LSTM cell is composed of
three gates implemented as sigmoid functions. Data xt comes
into the cell, and becomes part of gt the candidate cell which
also has previous memory information. �e ft (forget) gate
decides what information should be forgotten; the it (input)
gate decides what information should be stored, and the ot (output) gate decides what information should be the output
from the cell. Hidden state St-1 and cell state Lt-1 contain the
short and long-term memory states from the previous cells
respectively. Figure 2 demonstrates the internal workings of a
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning
of our neural networks. �is module allows nearly limitless
customization of model tuning with skilled use of Python. See
the documentation of the Keras Tuner Python module for more
information on the usage. Table 2 below shows the exact
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine
learning, there are three main loss functions: Mean Squared
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2).
Let N be the number of prediction samples, ȳ be the mean of the
true values, yi and ŷⁱ be the true and predicted values at sample
i, respectively. �ese metrics are de�ned as:

 (1)

 (2)

 (3)

 MSE is a very punishing loss because it is non-linear with
respect to error size. For example, an error of 10 is 100 times
worse than an error of 1 because of the squaring. Additionally,
the use of the square changes the units of the error to squared
target units which may be di�cult to understand. Because of
this, Root-MSE is a popular choice: RMSE=√MSE. can be good
because it is recorded in the same units as the target variable
(engine cycles in our case); however, it is linearly punishing and
treats an error of qβ as being q times worse than an error of β
which may not be good in certain cases such as jet engine
failure. R2 is generally not chosen as a loss as it is di�cult to
understand it as a loss function and easy to manipulate by
adding more variables to our input and “curating” the validation
data to have low variance. However, given two models with the
same input variables evaluated on the same data, R2 can be a
good “tie-breaker” for similar RMSE or MAE. For the reasons
laid out above, we selected to use RMSE for the training and
validation loss of our models, but we reported MAE as our
second metric.

Model architecture
Derived from the work done in, we used a neural network
architecture in Figure 3 that leverages the recurrent capabilities
and robustness of LSTM cells with the approximation abilities
of fully connected layers [8]. �e dropout layers and recurrent
dropout in the LSTM are used to prevent over-�tting and
improve generalization on unseen data. �e Gaussian noise
layers are also generalization-aiding layers, as well as the
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal
performance in machine learning models, and it involves three
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset
have noise included. �e noise was purposefully added when
the data was being generated [9]. Noise can be bad for machine
learning models since the models may over-�t the noise of the
training data, which has no real in�uence on the underlying
phenomena. Filtering is a way to reduce the noise in the signals
and improve the model generalization. We chose to use a
median �lter, which is a sliding window �lter that suppresses
noise and outliers, as illustrated in Figure 4 for Engine 11 of
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided
the signals based on each unit within each node. �en we tried
kernel sizes k=3,5,7,9,11,…, Mk where Mk = , si being the
number of samples for unit i. �e best kernel for each unit was
selected as the one that maximizes the linear correlation
between the target (RUL) and the signal being analyzed. We
then took the weighted geometric average of all the kernels and
set it as the �nal kernel size to use. �e weight varied as the
correlation and the number of samples for the unit. �e best was
selected depending on the �nal model performance.

�e second technique used is a simple “pruning” technique,
which randomly removes some samples from the ends of the
sequences of some of the time series in the training set. �is
method is similar in execution to neural network pruning,
though the goal is to make the data more representative as
opposed to reducing complexity [19,20]. �is was done to
mimic the test set time series, which did not run until failure.
�e general idea was to prevent the model from over-�tting to a
time series that starts at full health and ends at critical failure.
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in
vastly di�erent scales, such as data taken from di�erent sensors
from di�erent jet engines in di�erent operating conditions [21].
�e di�ering scales and variances can cause the neural network
to unfairly bias certain dimensions in the data due to
undesirable reasons. We elected to use the popular z-score
normalization technique, which takes all dimensions in the data
and normalizes them to have approximately zero mean and

standard deviation of 1. �is creates an even playing �eld when
it comes to assigning neural network parameters during
optimization. To use this technique, we simply turn each
observation in each sample into a z-score. Let X be the set of all
observations for a certain feature in one of our agents, we can
�nd the z-score for the ith observation xi using:

 from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that
deal with the degradation of parts, we decided to use some
feature engineering techniques to add dimensions and new
predictors to our data. �e �rst technique is a simple
accumulation technique where we take the cumulative sum of
certain signals throughout the degradation process. �e second
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input
space can add helpful dimensions to our dataset [22]. We took a
similar approach by taking a simple, single-dimension,
single-time-step signed change calculation to some of our
features and added these as new features. �e single time step is
because we do not know how long the “cycle” time dimension is.
Given that most engines in the dataset fail within 200 cycles, it
is safe to say each cycle is a relatively large time step, such as
hours or even an entire �ight. �us, having too large of a
window may not capture meaningful change. �e following
snippet of code in Listing 2 demonstrates how the rate of change
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3
outline the optimal con�guration for the Long
Short-Term Memory (LSTM) network used in
predicting the Remaining Useful Life (RUL) of jet
engines within a federated learning framework. �e
model employs 4 LSTM layers and 4 dense layers,
each with 64 units per layer, which balances model
complexity and computational e�ciency. A batch
size 32 was selected, enabling e�cient training
while maintaining su�cient gradient updates. To
prevent over�tting, a dropout rate of 0.1 and a
recurrent dropout rate of 0.2 were applied, ensuring
robust generalization to unseen data. �e learning
rate was set to 0.001, a standard choice for achieving
stable convergence during training. Additionally,
Gaussian noise with a variance of 0.01 was
introduced to improve the model's generalization
by simulating slight variations in the input data.
�ese hyperparameters were �ne-tuned through
extensive experimentation using KerasTuner,
ensuring optimal performance for the predictive
maintenance task while preserving data privacy in a
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several
studies aggregated by Asif et al. and compared the results with
our federated averaged model results [1]. We used statistical
tests to compare these models. First, we ran two-tailed, equal
means tests for all of them without selecting an α value
beforehand. All the p-values were extremely low. �us, all of the
equal means hypotheses were rejected, suggesting that our
models either outperformed or underperformed against each
study.

 We then performed greater-than-or-equal-to and
less-than-or-equal-to one-tailed tests against each of the studies
and recorded the results. Table 5 below summarizes the studies
for which our model was statistically better on average. �e
study number refers to the order in which the study appears in
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set
performance for our agents and our aggregated model. We also

have graphical demonstrations in Figure 5 of how our model
predicts the degradation of the di�erent faults over time,
considering the di�erent conditions simulated within the
di�erent agents.

We also generated 95% con�dence intervals for the true mean
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average,
the FL approach either maintained or improved the model
performance. While the test error across the individual agents
showed signi�cant variance, the aggregated model
demonstrated the ability to generalize and balance the error
overall. �e variance in individual agent performance can be
explained by the operating conditions detailed in Table 1.
FD002 and FD004 are simulated with variance in six operating
conditions (altitude, pressure, air speed, etc.), while FD001 and
FD003 are simulated at sea level with no variance. �us, FD002
and FD004 performed 1.25-1.6 times worse than the other
agents. �e statistical analysis provided further insights into the
e�ectiveness of the FL model. By conducting two-tailed equal
means tests and greater-than-or-equal-to and less-than-or-
equal-to one-tailed tests, we were able to compare our model’s
performance against other studies. �e consistently low
p-values and the rejection of null hypotheses in several cases
suggest that our FL-based model either outperforms or is
comparable to existing methods in predictive maintenance. �is
statistical rigor con�rms that the federated approach not only
preserves data privacy but also maintains, if not improves,
model accuracy.

Conclusions
�is study explores the application of FL in PM tasks, focusing
on engine fault prediction using deep learning with LSTM cells.
�e primary motivation behind this work was to address the
challenges of maintaining data privacy while allowing
collaboration between entities with data silos. Our main
hypothesis was that implementing the FL framework would
either maintain or improve the model performance on average
when compared to the centralized learning approach. �e
implementation of FL o�ers several key advantages in the

context of predictive maintenance. Firstly, it preserves data
privacy by ensuring that sensitive data remains localized on the
devices where it is generated. �is is particularly important in
industries like aerospace, where operational data can include
proprietary and sensitive information. By minimizing the need
for data centralization, FL reduces the risk of data breaches
while allowing collaboration between entities that would
otherwise not be able to collaborate. However, the study also
highlights some challenges associated with the implementation
of FL in predictive maintenance. Managing the FL process
across multiple devices introduces complexity, particularly in
coordinating updates and maintaining consistent model
performance across diverse environments. Additionally, the
federated approach can lead to biased subsets of data at each
node, which may a�ect the generalization of the global model.
Despite these challenges, the ability to collaborate across
di�erent entities without sharing raw data opens new
possibilities for improving the maintenance models
industry-wide. �is collaborative approach can accelerate
advancements in predictive maintenance technologies,
bene�ting not just individual companies but the entire industry.

Declarations
�is project has no external funding, and all authors consent to
its publication. �e data was acquired from NASA PCoE under
a Public Domain License, and the code is available upon request.

References
1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA.

Communication-e�cient learning of deep networks from
decentralized data. InArti�cial intelligence and statistics; 2017.
1273-1282p. https://doi.org/10.48550/arXiv.1602.05629

2. Diamoutene A, Kamsu-Foguem B, Noureddine F, Barro D.
Prediction of US General Aviation fatalities from extreme value
approach. Transp Res A: Policy Pract. 2018;109:65-75. .
https://doi.org/10.1016/j.tra.2018.01.022

3. Yin X, Zhu Y, Hu J. A comprehensive survey of privacy-preserving
federated learning: A taxonomy, review, and future directions. ACM
Comput Surv. 2021;54(6):1-36. https://doi.org/10.1145/3460427

4. Tene O, Polonetsky J. Privacy in the age of big data: a time for big
decisions. Stan. L. Rev. Online. 2011;64:63.

5. Stanton I, Munir K, Ikram A, El‐Bakry M. Predictive maintenance
analytics and implementation for aircra�: Challenges and opportunities.
Syst Eng. 2023;26(2):216-237. https://doi.org/10.1002/sys.21651

6. Meissner R, Rahn A, Wicke K. Developing prescriptive
maintenance strategies in the aviation industry based on a
discrete-event simulation framework for post-prognostics decision
making. Reliab Eng Syst Saf. 2021;214:107812. .
https://doi.org/10.1016/j.ress.2021.107812

7. Jiang Y, Tran TH, Williams L. Machine learning and mixed reality for
smart aviation: Applications and challenges. J Air Transp Manage.
2023;111:102437. https://doi.org/10.1016/j.jairtraman.2023.102437

8. Asif O, Haider SA, Naqvi SR, Zaki JF, Kwak KS, Islam SR. A deep
learning model for remaining useful life prediction of aircra�
turbofan engine on C-MAPSS dataset. Ieee Access. 2022;10:95425-
95440. https://doi.org/10.1109/ACCESS.2022.3203406

9. Saxena A, Goebel K, Simon D, Eklund N. Damage propagation
modeling for aircra� engine run-to-failure simulation. In2008
international conference on prognostics and health management;
2008. 1-9p.

10. Botre M, Brentner KS, Horn JF, Wachspress D. Validation of
helicopter noise prediction system with �ight data. InVertical Flight
Society 75th Annual Forum & Technology Display; 2019.
https://doi.org/10.4050/F-0075-2019-14447

11. Ebrahimi A, Jafari S, Nikolaidis T. Heat load development and heat
map sensitivity analysis for civil aero-engines. Int J Turbomach
Propuls Power. 2024;9(3):25. https://doi.org/10.3390/ijtpp9030025

12. Wang J, Charles Z, Xu Z, Joshi G, McMahan HB, Al-Shedivat M, et
al. A �eld guide to federated optimization. arXiv preprint
arXiv:2107.06917. 2021. https://doi.org/10.48550/arXiv.2107.06917

13. Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G, Piccialli F. Model
aggregation techniques in federated learning: A comprehensive
survey. Future Gener Comput Syst. 2024;150:272-293. .
https://doi.org/10.1016/j.future.2023.09.008

14. Mu X, Shen Y, Cheng K, Geng X, Fu J, Zhang T, et al. Fedproc: Prototypical
contrastive federated learning on non-iid data. Future Gener Comput
Syst. 2023;143:93-104. https://doi.org/10.1016/j.future.2023.01.019

15. T Dinh C, Tran N, Nguyen J. Personalized federated learning with
moreau envelopes. Adv Neural Inf Process Syst. 2020;33:21394-1405.

16. Noh SH. Analysis of gradient vanishing of RNNs and performance
comparison. Information. 2021;12(11):442. .
https://doi.org/10.3390/info12110442

17. Kaur H, Virmani J, �akur S. A genetic algorithm-based
metaheuristic approach to customize a computer-aided classi�cation

system for enhanced screen �lm mammograms. InU-Healthcare
Monitoring Systems; 2019. 217-259p. .
https://doi.org/10.1016/B978-0-12-815370-3.00010-4

18. Kumar A, Sodhi SS. Comparative analysis of gaussian �lter, median
�lters and denoise autoenocoder. In2020 7th international conference
on computing for sustainable global development (INDIACom); 2020.
45-51p. https://doi.org/10.23919/INDIACom49435.2020.9083712

19. Li L, Zhu J, Sun MT. Deep learning based method for pruning deep
neural networks. In2019 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW); 2019. 312-317p.
https://doi.org/10.1109/ICMEW.2019.00-68

20. Pasandi MM, Hajabdollahi M, Karimi N, Samavi S. Modeling of pruning
techniques for deep neural networks simpli�cation. arXiv preprint
arXiv:2001.04062. 2020. https://doi.org/10.48550/arXiv.2001.04062

21. Sharma V. A study on data scaling methods for machine learning. Int J
Glob Acad Sci Res. 2022;1(1):31-42. https://doi.org/10.55938/ijgasr.v1i1.4

22. Mu X, Pavel AB, Kon M. Di�erentiation and integration of machine
learning feature vectors. In2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA);2016. 611-616p.

1

2

JOURNAL OF MACHINE LEARNING AND APPLICATIONS
Jan-Mar 2025, VOL. 1, ISSUE 1, pp. 12-14
https://doi.org/10.61577/jmla.2025.100005

Integrating privacy-preserving machine learning (ML)
techniques—particularly Federated Learning (FL)—into
Predictive Maintenance (PM), represents a signi�cant shi� in
how industrial operations manage maintenance and data
security. �is approach has broad implications for operational
e�ciency, data privacy, regulatory compliance, and
technological innovation. In FL, data are processed locally at the
device or server level, drastically reducing the risk of exposing
sensitive information during transmission or in a centralized
database [1]. �is is crucial for industries where operational
data may include proprietary or sensitive business information.
By minimizing data centralization, federated learning decreases
the vulnerability of systems to massive data breaches, a growing
concern with the increasing incidences of cyber-attacks. �is
work investigates the application of FL to PM tasks, focusing on
the utilization of Long Short-Term Memory (LSTM) networks
for predicting engine faults. Our research is motivated by the
increasing demand for e�cient PM methodologies that can
minimize downtime and reduce operational costs in various
industries [2]. Privacy-preserving ML enables real-time data
analysis directly on the machines where data is generated. �is
allows for immediate identi�cation of potential issues,
facilitating quicker responses to prevent failures. With the

ability to analyze data across a network of devices without
compromising privacy, organizations can optimize
maintenance schedules based on predictive insights, rather
than reactive or scheduled maintenance strategies. �is not
only extends the life of equipment but also reduces
unnecessary downtime. FL aligns with global data protection
regulations towards treating privacy as a fundamental human
right and establishing robust privacy protection mechanisms
in the era of arti�cial intelligence [3,4]. �e latest update of the
National Arti�cial Intelligence R&D Strategic Plan by the
White House in 2023 underscores the signi�cance of FL in
addressing data privacy and security concerns. 1�is plan
elaborates on long-term investment strategies in responsible
AI research, emphasizing the need for advancements in
privacy-preserving data sharing and the ongoing challenges
within FL. �e General Data Protection Regulation (GDPR)2
in Europe also emphasizes data minimization, privacy by
design, and the principle of processing data close to its source.
Since FL does not require data to leave its source, it simpli�es
compliance with laws that restrict cross-border data transfers,
making it an attractive option for multinational corporations.
In FL only essential model-related information is transmitted.
�erefore, FL can signi�cantly reduce the costs associated

with data transmission. In addition, by processing data locally
and not requiring a central repository for vast amounts of raw
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning,
we re�ne our models’ accuracy, utilizing FL to distribute the
computational load and enhance data privacy. �e results
section provides an in-depth analysis of the models’
performance. Federated learning allows for the development of
highly tailored models that learn from diverse data sources
without compromising sensitive information. �is capability
can drive innovation in PM technologies. Di�erent entities,
even competitors, can collaborate to improve predictive models
without sharing sensitive data, accelerating industry-wide
advancements in maintenance strategies. Managing FL across
many devices and locations introduces complexity, especially
when coordinating updates and maintaining consistent model
performance across diverse environments. Implementing an FL
system requires sophisticated infrastructure and a shi� in
traditional data management strategies, which might be
challenging for some organizations. �is study encompasses a
process validation section, where we underscore our
collaboration with industry experts to ensure that our research
objectives align with practical applications and that our �ndings
remain relevant. �e use of privacy-preserving ML and FL in
PM strengthens data security and enhances operational
e�ciencies and compliance with regulatory norms. �ese
technologies are setting new standards for how industries
approach maintenance tasks while safeguarding critical data. As
adoption grows, they could rede�ne best practices for asset
management across various sectors, promising a future where
PM is both more e�ective and inherently secure. In summary,
this study delves into the application of federated learning for
PM, presenting a structured approach to model development
employing LSTM networks. Our �ndings aim to contribute to
the ongoing discussion on the potential of FL in industrial
applications, particularly in enhancing PM strategies to achieve
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies:
reactive and proactive. Both are widely used due to their
di�erent advantages and disadvantages. Reactive maintenance
describes the process of waiting for the life cycle of a part of an
airplane subsystem to completely run out before repairing or
replacing the faulty components [5]. Proactive maintenance
describes the process of scheduling regular maintenance to
repair/replace components before they become faulty [6]. �e
advantage of reactive maintenance is that we can get 100% usage
out of our parts, but the obvious disadvantage is that there is a
high chance of component failure happening during �ights.
�is can work for something non-critical like overhead cockpit
lights, which would not force a �ight to be grounded if they
failed in �ight. On the other hand, something like a
High-Pressure Compressor (HPC) failure in �ight could prove
disastrous. In these scenarios, it is better to perform proactive
maintenance, where the disadvantage is that we lose some usage
from our components, but we limit the number of in-�ight
failures. In more recent years, with the advancements of ML,
PM has become more popular as a third approach where we can

use machine learning to schedule our maintenance for high-risk
systems and still get close to 100% usage with a low-error model
[7,8]. �ere are two main problems with this approach: small
�eets with small sample sizes to train their PM models and large
�eets unwilling to share their plentiful data with competitors
due to privacy concerns. �e work done in this study applies to
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE)
researchers conducted engine degradation simulations using
the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and
readily accessible on the NASA website, which can serve as a
valuable resource for studying and analyzing engine
degradation behaviors in various operational scenarios. �e
data was converted to .csv and is stored on our GitHub
repository.

 �e C-MAPSS dataset is an operational behavior dataset
from di�erent engines. It o�ers a detailed look into the normal
operational conditions of engines, including the presence of
noise. Each data entry in the dataset contains 26 columns,
encompassing information such as unit number, time cycles,
three operational settings, and 21 sensor measurements (see
Appendix A for details). �ese data snapshots, taken during
individual operational cycles, provide valuable insights into the
engine’s behavior. Table 1 provides detailed information about
each node. Sensor measurements are observed to be
contaminated with noise, which can potentially introduce
inaccuracies and inconsistencies in the data analysis process
[10].

 �e dataset is structured into four training and four testing
datasets, each with varying numbers of trajectories, conditions,
and fault modes. �e training sets are designed to showcase
examples of faults that grow in magnitude until system failure
occurs, providing valuable learning opportunities for predictive
maintenance and fault detection. �e testing sets may end
before system failure, allowing for the evaluation of predictive
models under di�erent scenarios.

Agent
Name

Training
Set Size

Testing
Set Size

Simulation
Condition

Faults

FD001 100 100 1 HPC

FD002 260 259 6 HPC

FD003 100 100 1 Fan/HPC

FD004 248 249 6 Fan/HPC

Table 1. Trajectories and Conditions for each node

Heatmaps
Heatmaps are powerful visualization tools used to identify
correlations between variables in a dataset, making them
particularly useful for analyzing relationships among sensor
measurements [11]. By plotting a heat map of the correlation
matrix, patterns of correlation (both positive and negative)
between pairs of variables can be easily visualized through color
gradients. In the plot below, the lightest (white/tan) and darkest
(black) colors indicate the highest linear correlation among

variables. �e orange/red color indicates there is little to no
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the
strongest relationships consisting of SM2, SM3, SM4, SM7,
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are
correlated with almost all sensor measurement except SM6,
SM9, and SM14. Regarding the trend, it seems like RUL has a
similar correlation trend with SM7, SM12, SM20, and SM21,
which can imply that RUL is mainly determined by SM7, SM12,
SM20, and SM21. �e other interesting part is that OS1 and OS2
do not have any relationship with the sensor measurements. In
FD002, the RUL has no relationship with any of the sensor
measurements. SM15 has the strongest relationship with every
other sensor measurement, but it seems like it has the opposite
trend compared to others. Every operational setting and sensor
measurements are correlated with each other except for the
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and
OS2 are a�ected by most of the sensor measurements. In
FD003, the heatmaps show similar trends and relationships
among the operational setting and sensor measurements as in
FD001. For FD004, the heatmaps show similar trends and
relationships among the operational setting and sensor
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor
measurements from column variables 6 to 26, with unclear
descriptions. �e operational settings are Mach Number (0 to
0.90), altitude (sea level to 40,000 feet), and sea-level
temperature (-60°F to 103°F). Upon further research, the labels
were identi�ed for the sensor measurements with an
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist
of all data up until each failure, and testing sets have the cut-o�
of some data before the failure. For example, in the training set
for FD001, all rows with unit = 1 are the data from the �rst

failure. �e last row of unit 1 has cycles = 192, which means the
engine failed a�er 192 operational cycles. For the testing set, the
last row of unit = 1 has cycle = 31, which is not when the failure
happened. �e separate RUL �les contain the number of cycles
until failure from the last sample for each test unit. In the case of
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data
privacy and security. It is particularly bene�cial in scenarios
where data con�dentiality is crucial in a highly sensitive
environment. �is approach was chosen because it helps
prevent data leakage and reverse engineering of the data.
However, the setup can lead to biased subsets of data at each
node, as the training data is not shareable. To address this, a
federated learning algorithm is employed. Initially, the server
sends instructions to each node to train a local model. �ese
local node models train on their respective data, and a�er a
training round, they only transmit their updated weights to the
central server. �e central server then aggregates these weights.

 �ere are several aggregation methods available in
Federated Learning (FL), each designed to address speci�c

challenges and requirements, such as Federated
Average (Fed Avg), FedProx, and personalized FL,
etc. FedAvg is one of the most widely used methods,
functioning as a generalized version of local-SGD,
which performs a weighted average of local model
parameters (weights) a�er a certain number of
optimization steps are performed by each model
[12]. �e weights for the average are determined as
seen �t by the implementation. �e combined
model is then transmitted back to the nodes, which
use the updated model parameters as a starting
point for another round of training [13]. �is
process continues for multiple rounds until the
global model converges. FedProx is a generalization
of FedAvg and is primarily designed to address
challenges associated with Independent and
Identically Distributed (non-IID) data, which
means data distributions vary signi�cantly across
devices. �is method introduces a proximal term to
the local optimization objective, which restricts the

local updates to remain close to the global model. �is
modi�cation improves stability and convergence in
heterogeneous environments, making it particularly e�ective for
applications with diverse data sources [14]. Another method is
Personalized Federated Learning (FL), an alternative aggregation
method that aims to train a model that depends on individual
user preferences or behaviors [15]. Unlike FedAvg and FedProx,
which aim to train a single global model, personalized FL allows
for the creation of customized models for each user or device.
�is is achieved by incorporating user-speci�c parameters or
�ne-tuning the global model locally to better adapt to individual
data distributions. Personalized FL is especially useful in
scenarios where user data exhibits signi�cant variability, such as
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is
FedAvg, where the weight is the number of data samples

available for training at each node. FedAvg is a well-established
theoretical foundation approach and simpler to implement
than the other approaches, which may require a more complex
mechanism for tailoring models to individual users.

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially
the work done in, we decided that the best technique to model
RUL is to use deep learning with LSTM neural network [8].
LSTM is a type of Recurrent Neural Network (RNN) that is
suitable for modeling events that happen in sequence. LSTM
avoids the common vanishing gradient problem by using gates
to store or forget information as needed [16]. �is allows LSTM
to learn long-term dependencies more e�ectively while having
the ability to forget learned relationships that no longer bene�t
the goal of minimizing loss. Each LSTM cell is composed of
three gates implemented as sigmoid functions. Data xt comes
into the cell, and becomes part of gt the candidate cell which
also has previous memory information. �e ft (forget) gate
decides what information should be forgotten; the it (input)
gate decides what information should be stored, and the ot (output) gate decides what information should be the output
from the cell. Hidden state St-1 and cell state Lt-1 contain the
short and long-term memory states from the previous cells
respectively. Figure 2 demonstrates the internal workings of a
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning
of our neural networks. �is module allows nearly limitless
customization of model tuning with skilled use of Python. See
the documentation of the Keras Tuner Python module for more
information on the usage. Table 2 below shows the exact
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine
learning, there are three main loss functions: Mean Squared
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2).
Let N be the number of prediction samples, ȳ be the mean of the
true values, yi and ŷⁱ be the true and predicted values at sample
i, respectively. �ese metrics are de�ned as:

 (1)

 (2)

 (3)

 MSE is a very punishing loss because it is non-linear with
respect to error size. For example, an error of 10 is 100 times
worse than an error of 1 because of the squaring. Additionally,
the use of the square changes the units of the error to squared
target units which may be di�cult to understand. Because of
this, Root-MSE is a popular choice: RMSE=√MSE. can be good
because it is recorded in the same units as the target variable
(engine cycles in our case); however, it is linearly punishing and
treats an error of qβ as being q times worse than an error of β
which may not be good in certain cases such as jet engine
failure. R2 is generally not chosen as a loss as it is di�cult to
understand it as a loss function and easy to manipulate by
adding more variables to our input and “curating” the validation
data to have low variance. However, given two models with the
same input variables evaluated on the same data, R2 can be a
good “tie-breaker” for similar RMSE or MAE. For the reasons
laid out above, we selected to use RMSE for the training and
validation loss of our models, but we reported MAE as our
second metric.

Model architecture
Derived from the work done in, we used a neural network
architecture in Figure 3 that leverages the recurrent capabilities
and robustness of LSTM cells with the approximation abilities
of fully connected layers [8]. �e dropout layers and recurrent
dropout in the LSTM are used to prevent over-�tting and
improve generalization on unseen data. �e Gaussian noise
layers are also generalization-aiding layers, as well as the
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal
performance in machine learning models, and it involves three
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset
have noise included. �e noise was purposefully added when
the data was being generated [9]. Noise can be bad for machine
learning models since the models may over-�t the noise of the
training data, which has no real in�uence on the underlying
phenomena. Filtering is a way to reduce the noise in the signals
and improve the model generalization. We chose to use a
median �lter, which is a sliding window �lter that suppresses
noise and outliers, as illustrated in Figure 4 for Engine 11 of
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided
the signals based on each unit within each node. �en we tried
kernel sizes k=3,5,7,9,11,…, Mk where Mk = , si being the
number of samples for unit i. �e best kernel for each unit was
selected as the one that maximizes the linear correlation
between the target (RUL) and the signal being analyzed. We
then took the weighted geometric average of all the kernels and
set it as the �nal kernel size to use. �e weight varied as the
correlation and the number of samples for the unit. �e best was
selected depending on the �nal model performance.

�e second technique used is a simple “pruning” technique,
which randomly removes some samples from the ends of the
sequences of some of the time series in the training set. �is
method is similar in execution to neural network pruning,
though the goal is to make the data more representative as
opposed to reducing complexity [19,20]. �is was done to
mimic the test set time series, which did not run until failure.
�e general idea was to prevent the model from over-�tting to a
time series that starts at full health and ends at critical failure.
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in
vastly di�erent scales, such as data taken from di�erent sensors
from di�erent jet engines in di�erent operating conditions [21].
�e di�ering scales and variances can cause the neural network
to unfairly bias certain dimensions in the data due to
undesirable reasons. We elected to use the popular z-score
normalization technique, which takes all dimensions in the data
and normalizes them to have approximately zero mean and

standard deviation of 1. �is creates an even playing �eld when
it comes to assigning neural network parameters during
optimization. To use this technique, we simply turn each
observation in each sample into a z-score. Let X be the set of all
observations for a certain feature in one of our agents, we can
�nd the z-score for the ith observation xi using:

 from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that
deal with the degradation of parts, we decided to use some
feature engineering techniques to add dimensions and new
predictors to our data. �e �rst technique is a simple
accumulation technique where we take the cumulative sum of
certain signals throughout the degradation process. �e second
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input
space can add helpful dimensions to our dataset [22]. We took a
similar approach by taking a simple, single-dimension,
single-time-step signed change calculation to some of our
features and added these as new features. �e single time step is
because we do not know how long the “cycle” time dimension is.
Given that most engines in the dataset fail within 200 cycles, it
is safe to say each cycle is a relatively large time step, such as
hours or even an entire �ight. �us, having too large of a
window may not capture meaningful change. �e following
snippet of code in Listing 2 demonstrates how the rate of change
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3
outline the optimal con�guration for the Long
Short-Term Memory (LSTM) network used in
predicting the Remaining Useful Life (RUL) of jet
engines within a federated learning framework. �e
model employs 4 LSTM layers and 4 dense layers,
each with 64 units per layer, which balances model
complexity and computational e�ciency. A batch
size 32 was selected, enabling e�cient training
while maintaining su�cient gradient updates. To
prevent over�tting, a dropout rate of 0.1 and a
recurrent dropout rate of 0.2 were applied, ensuring
robust generalization to unseen data. �e learning
rate was set to 0.001, a standard choice for achieving
stable convergence during training. Additionally,
Gaussian noise with a variance of 0.01 was
introduced to improve the model's generalization
by simulating slight variations in the input data.
�ese hyperparameters were �ne-tuned through
extensive experimentation using KerasTuner,
ensuring optimal performance for the predictive
maintenance task while preserving data privacy in a
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several
studies aggregated by Asif et al. and compared the results with
our federated averaged model results [1]. We used statistical
tests to compare these models. First, we ran two-tailed, equal
means tests for all of them without selecting an α value
beforehand. All the p-values were extremely low. �us, all of the
equal means hypotheses were rejected, suggesting that our
models either outperformed or underperformed against each
study.

 We then performed greater-than-or-equal-to and
less-than-or-equal-to one-tailed tests against each of the studies
and recorded the results. Table 5 below summarizes the studies
for which our model was statistically better on average. �e
study number refers to the order in which the study appears in
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set
performance for our agents and our aggregated model. We also

have graphical demonstrations in Figure 5 of how our model
predicts the degradation of the di�erent faults over time,
considering the di�erent conditions simulated within the
di�erent agents.

We also generated 95% con�dence intervals for the true mean
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average,
the FL approach either maintained or improved the model
performance. While the test error across the individual agents
showed signi�cant variance, the aggregated model
demonstrated the ability to generalize and balance the error
overall. �e variance in individual agent performance can be
explained by the operating conditions detailed in Table 1.
FD002 and FD004 are simulated with variance in six operating
conditions (altitude, pressure, air speed, etc.), while FD001 and
FD003 are simulated at sea level with no variance. �us, FD002
and FD004 performed 1.25-1.6 times worse than the other
agents. �e statistical analysis provided further insights into the
e�ectiveness of the FL model. By conducting two-tailed equal
means tests and greater-than-or-equal-to and less-than-or-
equal-to one-tailed tests, we were able to compare our model’s
performance against other studies. �e consistently low
p-values and the rejection of null hypotheses in several cases
suggest that our FL-based model either outperforms or is
comparable to existing methods in predictive maintenance. �is
statistical rigor con�rms that the federated approach not only
preserves data privacy but also maintains, if not improves,
model accuracy.

Conclusions
�is study explores the application of FL in PM tasks, focusing
on engine fault prediction using deep learning with LSTM cells.
�e primary motivation behind this work was to address the
challenges of maintaining data privacy while allowing
collaboration between entities with data silos. Our main
hypothesis was that implementing the FL framework would
either maintain or improve the model performance on average
when compared to the centralized learning approach. �e
implementation of FL o�ers several key advantages in the

context of predictive maintenance. Firstly, it preserves data
privacy by ensuring that sensitive data remains localized on the
devices where it is generated. �is is particularly important in
industries like aerospace, where operational data can include
proprietary and sensitive information. By minimizing the need
for data centralization, FL reduces the risk of data breaches
while allowing collaboration between entities that would
otherwise not be able to collaborate. However, the study also
highlights some challenges associated with the implementation
of FL in predictive maintenance. Managing the FL process
across multiple devices introduces complexity, particularly in
coordinating updates and maintaining consistent model
performance across diverse environments. Additionally, the
federated approach can lead to biased subsets of data at each
node, which may a�ect the generalization of the global model.
Despite these challenges, the ability to collaborate across
di�erent entities without sharing raw data opens new
possibilities for improving the maintenance models
industry-wide. �is collaborative approach can accelerate
advancements in predictive maintenance technologies,
bene�ting not just individual companies but the entire industry.

Declarations
�is project has no external funding, and all authors consent to
its publication. �e data was acquired from NASA PCoE under
a Public Domain License, and the code is available upon request.

References
1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA.

Communication-e�cient learning of deep networks from
decentralized data. InArti�cial intelligence and statistics; 2017.
1273-1282p. https://doi.org/10.48550/arXiv.1602.05629

2. Diamoutene A, Kamsu-Foguem B, Noureddine F, Barro D.
Prediction of US General Aviation fatalities from extreme value
approach. Transp Res A: Policy Pract. 2018;109:65-75. .
https://doi.org/10.1016/j.tra.2018.01.022

3. Yin X, Zhu Y, Hu J. A comprehensive survey of privacy-preserving
federated learning: A taxonomy, review, and future directions. ACM
Comput Surv. 2021;54(6):1-36. https://doi.org/10.1145/3460427

4. Tene O, Polonetsky J. Privacy in the age of big data: a time for big
decisions. Stan. L. Rev. Online. 2011;64:63.

5. Stanton I, Munir K, Ikram A, El‐Bakry M. Predictive maintenance
analytics and implementation for aircra�: Challenges and opportunities.
Syst Eng. 2023;26(2):216-237. https://doi.org/10.1002/sys.21651

6. Meissner R, Rahn A, Wicke K. Developing prescriptive
maintenance strategies in the aviation industry based on a
discrete-event simulation framework for post-prognostics decision
making. Reliab Eng Syst Saf. 2021;214:107812. .
https://doi.org/10.1016/j.ress.2021.107812

7. Jiang Y, Tran TH, Williams L. Machine learning and mixed reality for
smart aviation: Applications and challenges. J Air Transp Manage.
2023;111:102437. https://doi.org/10.1016/j.jairtraman.2023.102437

8. Asif O, Haider SA, Naqvi SR, Zaki JF, Kwak KS, Islam SR. A deep
learning model for remaining useful life prediction of aircra�
turbofan engine on C-MAPSS dataset. Ieee Access. 2022;10:95425-
95440. https://doi.org/10.1109/ACCESS.2022.3203406

9. Saxena A, Goebel K, Simon D, Eklund N. Damage propagation
modeling for aircra� engine run-to-failure simulation. In2008
international conference on prognostics and health management;
2008. 1-9p.

10. Botre M, Brentner KS, Horn JF, Wachspress D. Validation of
helicopter noise prediction system with �ight data. InVertical Flight
Society 75th Annual Forum & Technology Display; 2019.
https://doi.org/10.4050/F-0075-2019-14447

11. Ebrahimi A, Jafari S, Nikolaidis T. Heat load development and heat
map sensitivity analysis for civil aero-engines. Int J Turbomach
Propuls Power. 2024;9(3):25. https://doi.org/10.3390/ijtpp9030025

12. Wang J, Charles Z, Xu Z, Joshi G, McMahan HB, Al-Shedivat M, et
al. A �eld guide to federated optimization. arXiv preprint
arXiv:2107.06917. 2021. https://doi.org/10.48550/arXiv.2107.06917

13. Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G, Piccialli F. Model
aggregation techniques in federated learning: A comprehensive
survey. Future Gener Comput Syst. 2024;150:272-293. .
https://doi.org/10.1016/j.future.2023.09.008

14. Mu X, Shen Y, Cheng K, Geng X, Fu J, Zhang T, et al. Fedproc: Prototypical
contrastive federated learning on non-iid data. Future Gener Comput
Syst. 2023;143:93-104. https://doi.org/10.1016/j.future.2023.01.019

15. T Dinh C, Tran N, Nguyen J. Personalized federated learning with
moreau envelopes. Adv Neural Inf Process Syst. 2020;33:21394-1405.

16. Noh SH. Analysis of gradient vanishing of RNNs and performance
comparison. Information. 2021;12(11):442. .
https://doi.org/10.3390/info12110442

17. Kaur H, Virmani J, �akur S. A genetic algorithm-based
metaheuristic approach to customize a computer-aided classi�cation

system for enhanced screen �lm mammograms. InU-Healthcare
Monitoring Systems; 2019. 217-259p. .
https://doi.org/10.1016/B978-0-12-815370-3.00010-4

18. Kumar A, Sodhi SS. Comparative analysis of gaussian �lter, median
�lters and denoise autoenocoder. In2020 7th international conference
on computing for sustainable global development (INDIACom); 2020.
45-51p. https://doi.org/10.23919/INDIACom49435.2020.9083712

19. Li L, Zhu J, Sun MT. Deep learning based method for pruning deep
neural networks. In2019 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW); 2019. 312-317p.
https://doi.org/10.1109/ICMEW.2019.00-68

20. Pasandi MM, Hajabdollahi M, Karimi N, Samavi S. Modeling of pruning
techniques for deep neural networks simpli�cation. arXiv preprint
arXiv:2001.04062. 2020. https://doi.org/10.48550/arXiv.2001.04062

21. Sharma V. A study on data scaling methods for machine learning. Int J
Glob Acad Sci Res. 2022;1(1):31-42. https://doi.org/10.55938/ijgasr.v1i1.4

22. Mu X, Pavel AB, Kon M. Di�erentiation and integration of machine
learning feature vectors. In2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA);2016. 611-616p.

J. Mach. Learn. Appl., 2025, 1, 17-24 © Reseapro Journals 2025
https://doi.org/10.61577/jmla.2025.100005

JOURNAL OF MACHINE LEARNING AND APPLICATIONS
2025, VOL. 1, ISSUE 1

18

Integrating privacy-preserving machine learning (ML)
techniques—particularly Federated Learning (FL)—into
Predictive Maintenance (PM), represents a signi�cant shi� in
how industrial operations manage maintenance and data
security. �is approach has broad implications for operational
e�ciency, data privacy, regulatory compliance, and
technological innovation. In FL, data are processed locally at the
device or server level, drastically reducing the risk of exposing
sensitive information during transmission or in a centralized
database [1]. �is is crucial for industries where operational
data may include proprietary or sensitive business information.
By minimizing data centralization, federated learning decreases
the vulnerability of systems to massive data breaches, a growing
concern with the increasing incidences of cyber-attacks. �is
work investigates the application of FL to PM tasks, focusing on
the utilization of Long Short-Term Memory (LSTM) networks
for predicting engine faults. Our research is motivated by the
increasing demand for e�cient PM methodologies that can
minimize downtime and reduce operational costs in various
industries [2]. Privacy-preserving ML enables real-time data
analysis directly on the machines where data is generated. �is
allows for immediate identi�cation of potential issues,
facilitating quicker responses to prevent failures. With the

ability to analyze data across a network of devices without
compromising privacy, organizations can optimize
maintenance schedules based on predictive insights, rather
than reactive or scheduled maintenance strategies. �is not
only extends the life of equipment but also reduces
unnecessary downtime. FL aligns with global data protection
regulations towards treating privacy as a fundamental human
right and establishing robust privacy protection mechanisms
in the era of arti�cial intelligence [3,4]. �e latest update of the
National Arti�cial Intelligence R&D Strategic Plan by the
White House in 2023 underscores the signi�cance of FL in
addressing data privacy and security concerns. 1�is plan
elaborates on long-term investment strategies in responsible
AI research, emphasizing the need for advancements in
privacy-preserving data sharing and the ongoing challenges
within FL. �e General Data Protection Regulation (GDPR)2
in Europe also emphasizes data minimization, privacy by
design, and the principle of processing data close to its source.
Since FL does not require data to leave its source, it simpli�es
compliance with laws that restrict cross-border data transfers,
making it an attractive option for multinational corporations.
In FL only essential model-related information is transmitted.
�erefore, FL can signi�cantly reduce the costs associated

with data transmission. In addition, by processing data locally
and not requiring a central repository for vast amounts of raw
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning,
we re�ne our models’ accuracy, utilizing FL to distribute the
computational load and enhance data privacy. �e results
section provides an in-depth analysis of the models’
performance. Federated learning allows for the development of
highly tailored models that learn from diverse data sources
without compromising sensitive information. �is capability
can drive innovation in PM technologies. Di�erent entities,
even competitors, can collaborate to improve predictive models
without sharing sensitive data, accelerating industry-wide
advancements in maintenance strategies. Managing FL across
many devices and locations introduces complexity, especially
when coordinating updates and maintaining consistent model
performance across diverse environments. Implementing an FL
system requires sophisticated infrastructure and a shi� in
traditional data management strategies, which might be
challenging for some organizations. �is study encompasses a
process validation section, where we underscore our
collaboration with industry experts to ensure that our research
objectives align with practical applications and that our �ndings
remain relevant. �e use of privacy-preserving ML and FL in
PM strengthens data security and enhances operational
e�ciencies and compliance with regulatory norms. �ese
technologies are setting new standards for how industries
approach maintenance tasks while safeguarding critical data. As
adoption grows, they could rede�ne best practices for asset
management across various sectors, promising a future where
PM is both more e�ective and inherently secure. In summary,
this study delves into the application of federated learning for
PM, presenting a structured approach to model development
employing LSTM networks. Our �ndings aim to contribute to
the ongoing discussion on the potential of FL in industrial
applications, particularly in enhancing PM strategies to achieve
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies:
reactive and proactive. Both are widely used due to their
di�erent advantages and disadvantages. Reactive maintenance
describes the process of waiting for the life cycle of a part of an
airplane subsystem to completely run out before repairing or
replacing the faulty components [5]. Proactive maintenance
describes the process of scheduling regular maintenance to
repair/replace components before they become faulty [6]. �e
advantage of reactive maintenance is that we can get 100% usage
out of our parts, but the obvious disadvantage is that there is a
high chance of component failure happening during �ights.
�is can work for something non-critical like overhead cockpit
lights, which would not force a �ight to be grounded if they
failed in �ight. On the other hand, something like a
High-Pressure Compressor (HPC) failure in �ight could prove
disastrous. In these scenarios, it is better to perform proactive
maintenance, where the disadvantage is that we lose some usage
from our components, but we limit the number of in-�ight
failures. In more recent years, with the advancements of ML,
PM has become more popular as a third approach where we can

use machine learning to schedule our maintenance for high-risk
systems and still get close to 100% usage with a low-error model
[7,8]. �ere are two main problems with this approach: small
�eets with small sample sizes to train their PM models and large
�eets unwilling to share their plentiful data with competitors
due to privacy concerns. �e work done in this study applies to
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE)
researchers conducted engine degradation simulations using
the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and
readily accessible on the NASA website, which can serve as a
valuable resource for studying and analyzing engine
degradation behaviors in various operational scenarios. �e
data was converted to .csv and is stored on our GitHub
repository.

 �e C-MAPSS dataset is an operational behavior dataset
from di�erent engines. It o�ers a detailed look into the normal
operational conditions of engines, including the presence of
noise. Each data entry in the dataset contains 26 columns,
encompassing information such as unit number, time cycles,
three operational settings, and 21 sensor measurements (see
Appendix A for details). �ese data snapshots, taken during
individual operational cycles, provide valuable insights into the
engine’s behavior. Table 1 provides detailed information about
each node. Sensor measurements are observed to be
contaminated with noise, which can potentially introduce
inaccuracies and inconsistencies in the data analysis process
[10].

 �e dataset is structured into four training and four testing
datasets, each with varying numbers of trajectories, conditions,
and fault modes. �e training sets are designed to showcase
examples of faults that grow in magnitude until system failure
occurs, providing valuable learning opportunities for predictive
maintenance and fault detection. �e testing sets may end
before system failure, allowing for the evaluation of predictive
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify
correlations between variables in a dataset, making them
particularly useful for analyzing relationships among sensor
measurements [11]. By plotting a heat map of the correlation
matrix, patterns of correlation (both positive and negative)
between pairs of variables can be easily visualized through color
gradients. In the plot below, the lightest (white/tan) and darkest
(black) colors indicate the highest linear correlation among

variables. �e orange/red color indicates there is little to no
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the
strongest relationships consisting of SM2, SM3, SM4, SM7,
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are
correlated with almost all sensor measurement except SM6,
SM9, and SM14. Regarding the trend, it seems like RUL has a
similar correlation trend with SM7, SM12, SM20, and SM21,
which can imply that RUL is mainly determined by SM7, SM12,
SM20, and SM21. �e other interesting part is that OS1 and OS2
do not have any relationship with the sensor measurements. In
FD002, the RUL has no relationship with any of the sensor
measurements. SM15 has the strongest relationship with every
other sensor measurement, but it seems like it has the opposite
trend compared to others. Every operational setting and sensor
measurements are correlated with each other except for the
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and
OS2 are a�ected by most of the sensor measurements. In
FD003, the heatmaps show similar trends and relationships
among the operational setting and sensor measurements as in
FD001. For FD004, the heatmaps show similar trends and
relationships among the operational setting and sensor
measurements as FD002.

Figure 1. Heatmaps of (a) FD001, (b) FD002, (c), FD003, and (d)
FD004 training datasets

Data preparation
�e original data contains three operational settings and sensor
measurements from column variables 6 to 26, with unclear
descriptions. �e operational settings are Mach Number (0 to
0.90), altitude (sea level to 40,000 feet), and sea-level
temperature (-60°F to 103°F). Upon further research, the labels
were identi�ed for the sensor measurements with an
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist
of all data up until each failure, and testing sets have the cut-o�
of some data before the failure. For example, in the training set
for FD001, all rows with unit = 1 are the data from the �rst

failure. �e last row of unit 1 has cycles = 192, which means the
engine failed a�er 192 operational cycles. For the testing set, the
last row of unit = 1 has cycle = 31, which is not when the failure
happened. �e separate RUL �les contain the number of cycles
until failure from the last sample for each test unit. In the case of
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data
privacy and security. It is particularly bene�cial in scenarios
where data con�dentiality is crucial in a highly sensitive
environment. �is approach was chosen because it helps
prevent data leakage and reverse engineering of the data.
However, the setup can lead to biased subsets of data at each
node, as the training data is not shareable. To address this, a
federated learning algorithm is employed. Initially, the server
sends instructions to each node to train a local model. �ese
local node models train on their respective data, and a�er a
training round, they only transmit their updated weights to the
central server. �e central server then aggregates these weights.

 �ere are several aggregation methods available in
Federated Learning (FL), each designed to address speci�c

challenges and requirements, such as Federated
Average (Fed Avg), FedProx, and personalized FL,
etc. FedAvg is one of the most widely used methods,
functioning as a generalized version of local-SGD,
which performs a weighted average of local model
parameters (weights) a�er a certain number of
optimization steps are performed by each model
[12]. �e weights for the average are determined as
seen �t by the implementation. �e combined
model is then transmitted back to the nodes, which
use the updated model parameters as a starting
point for another round of training [13]. �is
process continues for multiple rounds until the
global model converges. FedProx is a generalization
of FedAvg and is primarily designed to address
challenges associated with Independent and
Identically Distributed (non-IID) data, which
means data distributions vary signi�cantly across
devices. �is method introduces a proximal term to
the local optimization objective, which restricts the

local updates to remain close to the global model. �is
modi�cation improves stability and convergence in
heterogeneous environments, making it particularly e�ective for
applications with diverse data sources [14]. Another method is
Personalized Federated Learning (FL), an alternative aggregation
method that aims to train a model that depends on individual
user preferences or behaviors [15]. Unlike FedAvg and FedProx,
which aim to train a single global model, personalized FL allows
for the creation of customized models for each user or device.
�is is achieved by incorporating user-speci�c parameters or
�ne-tuning the global model locally to better adapt to individual
data distributions. Personalized FL is especially useful in
scenarios where user data exhibits signi�cant variability, such as
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is
FedAvg, where the weight is the number of data samples

available for training at each node. FedAvg is a well-established
theoretical foundation approach and simpler to implement
than the other approaches, which may require a more complex
mechanism for tailoring models to individual users.

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially
the work done in, we decided that the best technique to model
RUL is to use deep learning with LSTM neural network [8].
LSTM is a type of Recurrent Neural Network (RNN) that is
suitable for modeling events that happen in sequence. LSTM
avoids the common vanishing gradient problem by using gates
to store or forget information as needed [16]. �is allows LSTM
to learn long-term dependencies more e�ectively while having
the ability to forget learned relationships that no longer bene�t
the goal of minimizing loss. Each LSTM cell is composed of
three gates implemented as sigmoid functions. Data xt comes
into the cell, and becomes part of gt the candidate cell which
also has previous memory information. �e ft (forget) gate
decides what information should be forgotten; the it (input)
gate decides what information should be stored, and the ot (output) gate decides what information should be the output
from the cell. Hidden state St-1 and cell state Lt-1 contain the
short and long-term memory states from the previous cells
respectively. Figure 2 demonstrates the internal workings of a
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning
of our neural networks. �is module allows nearly limitless
customization of model tuning with skilled use of Python. See
the documentation of the Keras Tuner Python module for more
information on the usage. Table 2 below shows the exact
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine
learning, there are three main loss functions: Mean Squared
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2).
Let N be the number of prediction samples, ȳ be the mean of the
true values, yi and ŷⁱ be the true and predicted values at sample
i, respectively. �ese metrics are de�ned as:

 (1)

 (2)

 (3)

 MSE is a very punishing loss because it is non-linear with
respect to error size. For example, an error of 10 is 100 times
worse than an error of 1 because of the squaring. Additionally,
the use of the square changes the units of the error to squared
target units which may be di�cult to understand. Because of
this, Root-MSE is a popular choice: RMSE=√MSE. can be good
because it is recorded in the same units as the target variable
(engine cycles in our case); however, it is linearly punishing and
treats an error of qβ as being q times worse than an error of β
which may not be good in certain cases such as jet engine
failure. R2 is generally not chosen as a loss as it is di�cult to
understand it as a loss function and easy to manipulate by
adding more variables to our input and “curating” the validation
data to have low variance. However, given two models with the
same input variables evaluated on the same data, R2 can be a
good “tie-breaker” for similar RMSE or MAE. For the reasons
laid out above, we selected to use RMSE for the training and
validation loss of our models, but we reported MAE as our
second metric.

Model architecture
Derived from the work done in, we used a neural network
architecture in Figure 3 that leverages the recurrent capabilities
and robustness of LSTM cells with the approximation abilities
of fully connected layers [8]. �e dropout layers and recurrent
dropout in the LSTM are used to prevent over-�tting and
improve generalization on unseen data. �e Gaussian noise
layers are also generalization-aiding layers, as well as the
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal
performance in machine learning models, and it involves three
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset
have noise included. �e noise was purposefully added when
the data was being generated [9]. Noise can be bad for machine
learning models since the models may over-�t the noise of the
training data, which has no real in�uence on the underlying
phenomena. Filtering is a way to reduce the noise in the signals
and improve the model generalization. We chose to use a
median �lter, which is a sliding window �lter that suppresses
noise and outliers, as illustrated in Figure 4 for Engine 11 of
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided
the signals based on each unit within each node. �en we tried
kernel sizes k=3,5,7,9,11,…, Mk where Mk = , si being the
number of samples for unit i. �e best kernel for each unit was
selected as the one that maximizes the linear correlation
between the target (RUL) and the signal being analyzed. We
then took the weighted geometric average of all the kernels and
set it as the �nal kernel size to use. �e weight varied as the
correlation and the number of samples for the unit. �e best was
selected depending on the �nal model performance.

�e second technique used is a simple “pruning” technique,
which randomly removes some samples from the ends of the
sequences of some of the time series in the training set. �is
method is similar in execution to neural network pruning,
though the goal is to make the data more representative as
opposed to reducing complexity [19,20]. �is was done to
mimic the test set time series, which did not run until failure.
�e general idea was to prevent the model from over-�tting to a
time series that starts at full health and ends at critical failure.
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in
vastly di�erent scales, such as data taken from di�erent sensors
from di�erent jet engines in di�erent operating conditions [21].
�e di�ering scales and variances can cause the neural network
to unfairly bias certain dimensions in the data due to
undesirable reasons. We elected to use the popular z-score
normalization technique, which takes all dimensions in the data
and normalizes them to have approximately zero mean and

standard deviation of 1. �is creates an even playing �eld when
it comes to assigning neural network parameters during
optimization. To use this technique, we simply turn each
observation in each sample into a z-score. Let X be the set of all
observations for a certain feature in one of our agents, we can
�nd the z-score for the ith observation xi using:

 from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that
deal with the degradation of parts, we decided to use some
feature engineering techniques to add dimensions and new
predictors to our data. �e �rst technique is a simple
accumulation technique where we take the cumulative sum of
certain signals throughout the degradation process. �e second
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input
space can add helpful dimensions to our dataset [22]. We took a
similar approach by taking a simple, single-dimension,
single-time-step signed change calculation to some of our
features and added these as new features. �e single time step is
because we do not know how long the “cycle” time dimension is.
Given that most engines in the dataset fail within 200 cycles, it
is safe to say each cycle is a relatively large time step, such as
hours or even an entire �ight. �us, having too large of a
window may not capture meaningful change. �e following
snippet of code in Listing 2 demonstrates how the rate of change
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3
outline the optimal con�guration for the Long
Short-Term Memory (LSTM) network used in
predicting the Remaining Useful Life (RUL) of jet
engines within a federated learning framework. �e
model employs 4 LSTM layers and 4 dense layers,
each with 64 units per layer, which balances model
complexity and computational e�ciency. A batch
size 32 was selected, enabling e�cient training
while maintaining su�cient gradient updates. To
prevent over�tting, a dropout rate of 0.1 and a
recurrent dropout rate of 0.2 were applied, ensuring
robust generalization to unseen data. �e learning
rate was set to 0.001, a standard choice for achieving
stable convergence during training. Additionally,
Gaussian noise with a variance of 0.01 was
introduced to improve the model's generalization
by simulating slight variations in the input data.
�ese hyperparameters were �ne-tuned through
extensive experimentation using KerasTuner,
ensuring optimal performance for the predictive
maintenance task while preserving data privacy in a
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several
studies aggregated by Asif et al. and compared the results with
our federated averaged model results [1]. We used statistical
tests to compare these models. First, we ran two-tailed, equal
means tests for all of them without selecting an α value
beforehand. All the p-values were extremely low. �us, all of the
equal means hypotheses were rejected, suggesting that our
models either outperformed or underperformed against each
study.

 We then performed greater-than-or-equal-to and
less-than-or-equal-to one-tailed tests against each of the studies
and recorded the results. Table 5 below summarizes the studies
for which our model was statistically better on average. �e
study number refers to the order in which the study appears in
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set
performance for our agents and our aggregated model. We also

have graphical demonstrations in Figure 5 of how our model
predicts the degradation of the di�erent faults over time,
considering the di�erent conditions simulated within the
di�erent agents.

We also generated 95% con�dence intervals for the true mean
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average,
the FL approach either maintained or improved the model
performance. While the test error across the individual agents
showed signi�cant variance, the aggregated model
demonstrated the ability to generalize and balance the error
overall. �e variance in individual agent performance can be
explained by the operating conditions detailed in Table 1.
FD002 and FD004 are simulated with variance in six operating
conditions (altitude, pressure, air speed, etc.), while FD001 and
FD003 are simulated at sea level with no variance. �us, FD002
and FD004 performed 1.25-1.6 times worse than the other
agents. �e statistical analysis provided further insights into the
e�ectiveness of the FL model. By conducting two-tailed equal
means tests and greater-than-or-equal-to and less-than-or-
equal-to one-tailed tests, we were able to compare our model’s
performance against other studies. �e consistently low
p-values and the rejection of null hypotheses in several cases
suggest that our FL-based model either outperforms or is
comparable to existing methods in predictive maintenance. �is
statistical rigor con�rms that the federated approach not only
preserves data privacy but also maintains, if not improves,
model accuracy.

Conclusions
�is study explores the application of FL in PM tasks, focusing
on engine fault prediction using deep learning with LSTM cells.
�e primary motivation behind this work was to address the
challenges of maintaining data privacy while allowing
collaboration between entities with data silos. Our main
hypothesis was that implementing the FL framework would
either maintain or improve the model performance on average
when compared to the centralized learning approach. �e
implementation of FL o�ers several key advantages in the

context of predictive maintenance. Firstly, it preserves data
privacy by ensuring that sensitive data remains localized on the
devices where it is generated. �is is particularly important in
industries like aerospace, where operational data can include
proprietary and sensitive information. By minimizing the need
for data centralization, FL reduces the risk of data breaches
while allowing collaboration between entities that would
otherwise not be able to collaborate. However, the study also
highlights some challenges associated with the implementation
of FL in predictive maintenance. Managing the FL process
across multiple devices introduces complexity, particularly in
coordinating updates and maintaining consistent model
performance across diverse environments. Additionally, the
federated approach can lead to biased subsets of data at each
node, which may a�ect the generalization of the global model.
Despite these challenges, the ability to collaborate across
di�erent entities without sharing raw data opens new
possibilities for improving the maintenance models
industry-wide. �is collaborative approach can accelerate
advancements in predictive maintenance technologies,
bene�ting not just individual companies but the entire industry.

Declarations
�is project has no external funding, and all authors consent to
its publication. �e data was acquired from NASA PCoE under
a Public Domain License, and the code is available upon request.

References
1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA.

Communication-e�cient learning of deep networks from
decentralized data. InArti�cial intelligence and statistics; 2017.
1273-1282p. https://doi.org/10.48550/arXiv.1602.05629

2. Diamoutene A, Kamsu-Foguem B, Noureddine F, Barro D.
Prediction of US General Aviation fatalities from extreme value
approach. Transp Res A: Policy Pract. 2018;109:65-75. .
https://doi.org/10.1016/j.tra.2018.01.022

3. Yin X, Zhu Y, Hu J. A comprehensive survey of privacy-preserving
federated learning: A taxonomy, review, and future directions. ACM
Comput Surv. 2021;54(6):1-36. https://doi.org/10.1145/3460427

4. Tene O, Polonetsky J. Privacy in the age of big data: a time for big
decisions. Stan. L. Rev. Online. 2011;64:63.

5. Stanton I, Munir K, Ikram A, El‐Bakry M. Predictive maintenance
analytics and implementation for aircra�: Challenges and opportunities.
Syst Eng. 2023;26(2):216-237. https://doi.org/10.1002/sys.21651

6. Meissner R, Rahn A, Wicke K. Developing prescriptive
maintenance strategies in the aviation industry based on a
discrete-event simulation framework for post-prognostics decision
making. Reliab Eng Syst Saf. 2021;214:107812. .
https://doi.org/10.1016/j.ress.2021.107812

7. Jiang Y, Tran TH, Williams L. Machine learning and mixed reality for
smart aviation: Applications and challenges. J Air Transp Manage.
2023;111:102437. https://doi.org/10.1016/j.jairtraman.2023.102437

8. Asif O, Haider SA, Naqvi SR, Zaki JF, Kwak KS, Islam SR. A deep
learning model for remaining useful life prediction of aircra�
turbofan engine on C-MAPSS dataset. Ieee Access. 2022;10:95425-
95440. https://doi.org/10.1109/ACCESS.2022.3203406

9. Saxena A, Goebel K, Simon D, Eklund N. Damage propagation
modeling for aircra� engine run-to-failure simulation. In2008
international conference on prognostics and health management;
2008. 1-9p.

10. Botre M, Brentner KS, Horn JF, Wachspress D. Validation of
helicopter noise prediction system with �ight data. InVertical Flight
Society 75th Annual Forum & Technology Display; 2019.
https://doi.org/10.4050/F-0075-2019-14447

11. Ebrahimi A, Jafari S, Nikolaidis T. Heat load development and heat
map sensitivity analysis for civil aero-engines. Int J Turbomach
Propuls Power. 2024;9(3):25. https://doi.org/10.3390/ijtpp9030025

12. Wang J, Charles Z, Xu Z, Joshi G, McMahan HB, Al-Shedivat M, et
al. A �eld guide to federated optimization. arXiv preprint
arXiv:2107.06917. 2021. https://doi.org/10.48550/arXiv.2107.06917

13. Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G, Piccialli F. Model
aggregation techniques in federated learning: A comprehensive
survey. Future Gener Comput Syst. 2024;150:272-293. .
https://doi.org/10.1016/j.future.2023.09.008

14. Mu X, Shen Y, Cheng K, Geng X, Fu J, Zhang T, et al. Fedproc: Prototypical
contrastive federated learning on non-iid data. Future Gener Comput
Syst. 2023;143:93-104. https://doi.org/10.1016/j.future.2023.01.019

15. T Dinh C, Tran N, Nguyen J. Personalized federated learning with
moreau envelopes. Adv Neural Inf Process Syst. 2020;33:21394-1405.

16. Noh SH. Analysis of gradient vanishing of RNNs and performance
comparison. Information. 2021;12(11):442. .
https://doi.org/10.3390/info12110442

17. Kaur H, Virmani J, �akur S. A genetic algorithm-based
metaheuristic approach to customize a computer-aided classi�cation

system for enhanced screen �lm mammograms. InU-Healthcare
Monitoring Systems; 2019. 217-259p. .
https://doi.org/10.1016/B978-0-12-815370-3.00010-4

18. Kumar A, Sodhi SS. Comparative analysis of gaussian �lter, median
�lters and denoise autoenocoder. In2020 7th international conference
on computing for sustainable global development (INDIACom); 2020.
45-51p. https://doi.org/10.23919/INDIACom49435.2020.9083712

19. Li L, Zhu J, Sun MT. Deep learning based method for pruning deep
neural networks. In2019 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW); 2019. 312-317p.
https://doi.org/10.1109/ICMEW.2019.00-68

20. Pasandi MM, Hajabdollahi M, Karimi N, Samavi S. Modeling of pruning
techniques for deep neural networks simpli�cation. arXiv preprint
arXiv:2001.04062. 2020. https://doi.org/10.48550/arXiv.2001.04062

21. Sharma V. A study on data scaling methods for machine learning. Int J
Glob Acad Sci Res. 2022;1(1):31-42. https://doi.org/10.55938/ijgasr.v1i1.4

22. Mu X, Pavel AB, Kon M. Di�erentiation and integration of machine
learning feature vectors. In2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA);2016. 611-616p.

J. Mach. Learn. Appl., 2025, 1, 17-24 © Reseapro Journals 2025
https://doi.org/10.61577/jmla.2025.100005

JOURNAL OF MACHINE LEARNING AND APPLICATIONS
2025, VOL. 1, ISSUE 1

19

Integrating privacy-preserving machine learning (ML)
techniques—particularly Federated Learning (FL)—into
Predictive Maintenance (PM), represents a signi�cant shi� in
how industrial operations manage maintenance and data
security. �is approach has broad implications for operational
e�ciency, data privacy, regulatory compliance, and
technological innovation. In FL, data are processed locally at the
device or server level, drastically reducing the risk of exposing
sensitive information during transmission or in a centralized
database [1]. �is is crucial for industries where operational
data may include proprietary or sensitive business information.
By minimizing data centralization, federated learning decreases
the vulnerability of systems to massive data breaches, a growing
concern with the increasing incidences of cyber-attacks. �is
work investigates the application of FL to PM tasks, focusing on
the utilization of Long Short-Term Memory (LSTM) networks
for predicting engine faults. Our research is motivated by the
increasing demand for e�cient PM methodologies that can
minimize downtime and reduce operational costs in various
industries [2]. Privacy-preserving ML enables real-time data
analysis directly on the machines where data is generated. �is
allows for immediate identi�cation of potential issues,
facilitating quicker responses to prevent failures. With the

ability to analyze data across a network of devices without
compromising privacy, organizations can optimize
maintenance schedules based on predictive insights, rather
than reactive or scheduled maintenance strategies. �is not
only extends the life of equipment but also reduces
unnecessary downtime. FL aligns with global data protection
regulations towards treating privacy as a fundamental human
right and establishing robust privacy protection mechanisms
in the era of arti�cial intelligence [3,4]. �e latest update of the
National Arti�cial Intelligence R&D Strategic Plan by the
White House in 2023 underscores the signi�cance of FL in
addressing data privacy and security concerns. 1�is plan
elaborates on long-term investment strategies in responsible
AI research, emphasizing the need for advancements in
privacy-preserving data sharing and the ongoing challenges
within FL. �e General Data Protection Regulation (GDPR)2
in Europe also emphasizes data minimization, privacy by
design, and the principle of processing data close to its source.
Since FL does not require data to leave its source, it simpli�es
compliance with laws that restrict cross-border data transfers,
making it an attractive option for multinational corporations.
In FL only essential model-related information is transmitted.
�erefore, FL can signi�cantly reduce the costs associated

with data transmission. In addition, by processing data locally
and not requiring a central repository for vast amounts of raw
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning,
we re�ne our models’ accuracy, utilizing FL to distribute the
computational load and enhance data privacy. �e results
section provides an in-depth analysis of the models’
performance. Federated learning allows for the development of
highly tailored models that learn from diverse data sources
without compromising sensitive information. �is capability
can drive innovation in PM technologies. Di�erent entities,
even competitors, can collaborate to improve predictive models
without sharing sensitive data, accelerating industry-wide
advancements in maintenance strategies. Managing FL across
many devices and locations introduces complexity, especially
when coordinating updates and maintaining consistent model
performance across diverse environments. Implementing an FL
system requires sophisticated infrastructure and a shi� in
traditional data management strategies, which might be
challenging for some organizations. �is study encompasses a
process validation section, where we underscore our
collaboration with industry experts to ensure that our research
objectives align with practical applications and that our �ndings
remain relevant. �e use of privacy-preserving ML and FL in
PM strengthens data security and enhances operational
e�ciencies and compliance with regulatory norms. �ese
technologies are setting new standards for how industries
approach maintenance tasks while safeguarding critical data. As
adoption grows, they could rede�ne best practices for asset
management across various sectors, promising a future where
PM is both more e�ective and inherently secure. In summary,
this study delves into the application of federated learning for
PM, presenting a structured approach to model development
employing LSTM networks. Our �ndings aim to contribute to
the ongoing discussion on the potential of FL in industrial
applications, particularly in enhancing PM strategies to achieve
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies:
reactive and proactive. Both are widely used due to their
di�erent advantages and disadvantages. Reactive maintenance
describes the process of waiting for the life cycle of a part of an
airplane subsystem to completely run out before repairing or
replacing the faulty components [5]. Proactive maintenance
describes the process of scheduling regular maintenance to
repair/replace components before they become faulty [6]. �e
advantage of reactive maintenance is that we can get 100% usage
out of our parts, but the obvious disadvantage is that there is a
high chance of component failure happening during �ights.
�is can work for something non-critical like overhead cockpit
lights, which would not force a �ight to be grounded if they
failed in �ight. On the other hand, something like a
High-Pressure Compressor (HPC) failure in �ight could prove
disastrous. In these scenarios, it is better to perform proactive
maintenance, where the disadvantage is that we lose some usage
from our components, but we limit the number of in-�ight
failures. In more recent years, with the advancements of ML,
PM has become more popular as a third approach where we can

use machine learning to schedule our maintenance for high-risk
systems and still get close to 100% usage with a low-error model
[7,8]. �ere are two main problems with this approach: small
�eets with small sample sizes to train their PM models and large
�eets unwilling to share their plentiful data with competitors
due to privacy concerns. �e work done in this study applies to
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE)
researchers conducted engine degradation simulations using
the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and
readily accessible on the NASA website, which can serve as a
valuable resource for studying and analyzing engine
degradation behaviors in various operational scenarios. �e
data was converted to .csv and is stored on our GitHub
repository.

 �e C-MAPSS dataset is an operational behavior dataset
from di�erent engines. It o�ers a detailed look into the normal
operational conditions of engines, including the presence of
noise. Each data entry in the dataset contains 26 columns,
encompassing information such as unit number, time cycles,
three operational settings, and 21 sensor measurements (see
Appendix A for details). �ese data snapshots, taken during
individual operational cycles, provide valuable insights into the
engine’s behavior. Table 1 provides detailed information about
each node. Sensor measurements are observed to be
contaminated with noise, which can potentially introduce
inaccuracies and inconsistencies in the data analysis process
[10].

 �e dataset is structured into four training and four testing
datasets, each with varying numbers of trajectories, conditions,
and fault modes. �e training sets are designed to showcase
examples of faults that grow in magnitude until system failure
occurs, providing valuable learning opportunities for predictive
maintenance and fault detection. �e testing sets may end
before system failure, allowing for the evaluation of predictive
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify
correlations between variables in a dataset, making them
particularly useful for analyzing relationships among sensor
measurements [11]. By plotting a heat map of the correlation
matrix, patterns of correlation (both positive and negative)
between pairs of variables can be easily visualized through color
gradients. In the plot below, the lightest (white/tan) and darkest
(black) colors indicate the highest linear correlation among

variables. �e orange/red color indicates there is little to no
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the
strongest relationships consisting of SM2, SM3, SM4, SM7,
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are
correlated with almost all sensor measurement except SM6,
SM9, and SM14. Regarding the trend, it seems like RUL has a
similar correlation trend with SM7, SM12, SM20, and SM21,
which can imply that RUL is mainly determined by SM7, SM12,
SM20, and SM21. �e other interesting part is that OS1 and OS2
do not have any relationship with the sensor measurements. In
FD002, the RUL has no relationship with any of the sensor
measurements. SM15 has the strongest relationship with every
other sensor measurement, but it seems like it has the opposite
trend compared to others. Every operational setting and sensor
measurements are correlated with each other except for the
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and
OS2 are a�ected by most of the sensor measurements. In
FD003, the heatmaps show similar trends and relationships
among the operational setting and sensor measurements as in
FD001. For FD004, the heatmaps show similar trends and
relationships among the operational setting and sensor
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor
measurements from column variables 6 to 26, with unclear
descriptions. �e operational settings are Mach Number (0 to
0.90), altitude (sea level to 40,000 feet), and sea-level
temperature (-60°F to 103°F). Upon further research, the labels
were identi�ed for the sensor measurements with an
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist
of all data up until each failure, and testing sets have the cut-o�
of some data before the failure. For example, in the training set
for FD001, all rows with unit = 1 are the data from the �rst

failure. �e last row of unit 1 has cycles = 192, which means the
engine failed a�er 192 operational cycles. For the testing set, the
last row of unit = 1 has cycle = 31, which is not when the failure
happened. �e separate RUL �les contain the number of cycles
until failure from the last sample for each test unit. In the case of
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data
privacy and security. It is particularly bene�cial in scenarios
where data con�dentiality is crucial in a highly sensitive
environment. �is approach was chosen because it helps
prevent data leakage and reverse engineering of the data.
However, the setup can lead to biased subsets of data at each
node, as the training data is not shareable. To address this, a
federated learning algorithm is employed. Initially, the server
sends instructions to each node to train a local model. �ese
local node models train on their respective data, and a�er a
training round, they only transmit their updated weights to the
central server. �e central server then aggregates these weights.

 �ere are several aggregation methods available in
Federated Learning (FL), each designed to address speci�c

challenges and requirements, such as Federated
Average (Fed Avg), FedProx, and personalized FL,
etc. FedAvg is one of the most widely used methods,
functioning as a generalized version of local-SGD,
which performs a weighted average of local model
parameters (weights) a�er a certain number of
optimization steps are performed by each model
[12]. �e weights for the average are determined as
seen �t by the implementation. �e combined
model is then transmitted back to the nodes, which
use the updated model parameters as a starting
point for another round of training [13]. �is
process continues for multiple rounds until the
global model converges. FedProx is a generalization
of FedAvg and is primarily designed to address
challenges associated with Independent and
Identically Distributed (non-IID) data, which
means data distributions vary signi�cantly across
devices. �is method introduces a proximal term to
the local optimization objective, which restricts the

local updates to remain close to the global model. �is
modi�cation improves stability and convergence in
heterogeneous environments, making it particularly e�ective for
applications with diverse data sources [14]. Another method is
Personalized Federated Learning (FL), an alternative aggregation
method that aims to train a model that depends on individual
user preferences or behaviors [15]. Unlike FedAvg and FedProx,
which aim to train a single global model, personalized FL allows
for the creation of customized models for each user or device.
�is is achieved by incorporating user-speci�c parameters or
�ne-tuning the global model locally to better adapt to individual
data distributions. Personalized FL is especially useful in
scenarios where user data exhibits signi�cant variability, such as
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is
FedAvg, where the weight is the number of data samples

available for training at each node. FedAvg is a well-established
theoretical foundation approach and simpler to implement
than the other approaches, which may require a more complex
mechanism for tailoring models to individual users.

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially
the work done in, we decided that the best technique to model
RUL is to use deep learning with LSTM neural network [8].
LSTM is a type of Recurrent Neural Network (RNN) that is
suitable for modeling events that happen in sequence. LSTM
avoids the common vanishing gradient problem by using gates
to store or forget information as needed [16]. �is allows LSTM
to learn long-term dependencies more e�ectively while having
the ability to forget learned relationships that no longer bene�t
the goal of minimizing loss. Each LSTM cell is composed of
three gates implemented as sigmoid functions. Data xt comes
into the cell, and becomes part of gt the candidate cell which
also has previous memory information. �e ft (forget) gate
decides what information should be forgotten; the it (input)
gate decides what information should be stored, and the ot (output) gate decides what information should be the output
from the cell. Hidden state St-1 and cell state Lt-1 contain the
short and long-term memory states from the previous cells
respectively. Figure 2 demonstrates the internal workings of a
single LSTM cell.

Figure 2. Diagram of LSTM cell internal structures.

Model validation
We used the Keras Tuner python module to do extensive tuning
of our neural networks. �is module allows nearly limitless
customization of model tuning with skilled use of Python. See
the documentation of the Keras Tuner Python module for more
information on the usage. Table 2 below shows the exact
hyper-parameters and values tested.

Hyper-parameter Name Values

Sequence Length 1, 2, 4, 8

Batch Size 1, 8, 32
Layer Dropout 0.1, 0.2, 0.3
Recurrent Dropout 0.1, 0.2
Learning Rate 0.0001, 0.001, 0.002
Gaussian Noise 0.01, 0.1

Table 2. Keras Tuner Con�guration

Metrics and loss
When it comes to metrics for regression problems in machine
learning, there are three main loss functions: Mean Squared
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2).
Let N be the number of prediction samples, ȳ be the mean of the
true values, yi and ŷⁱ be the true and predicted values at sample
i, respectively. �ese metrics are de�ned as:

 (1)

 (2)

 (3)

 MSE is a very punishing loss because it is non-linear with
respect to error size. For example, an error of 10 is 100 times
worse than an error of 1 because of the squaring. Additionally,
the use of the square changes the units of the error to squared
target units which may be di�cult to understand. Because of
this, Root-MSE is a popular choice: RMSE=√MSE. can be good
because it is recorded in the same units as the target variable
(engine cycles in our case); however, it is linearly punishing and
treats an error of qβ as being q times worse than an error of β
which may not be good in certain cases such as jet engine
failure. R2 is generally not chosen as a loss as it is di�cult to
understand it as a loss function and easy to manipulate by
adding more variables to our input and “curating” the validation
data to have low variance. However, given two models with the
same input variables evaluated on the same data, R2 can be a
good “tie-breaker” for similar RMSE or MAE. For the reasons
laid out above, we selected to use RMSE for the training and
validation loss of our models, but we reported MAE as our
second metric.

Model architecture
Derived from the work done in, we used a neural network
architecture in Figure 3 that leverages the recurrent capabilities
and robustness of LSTM cells with the approximation abilities
of fully connected layers [8]. �e dropout layers and recurrent
dropout in the LSTM are used to prevent over-�tting and
improve generalization on unseen data. �e Gaussian noise
layers are also generalization-aiding layers, as well as the
di�erential privacy facet of Federated Learning.

Figure 3. Neural network architecture diagram

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal
performance in machine learning models, and it involves three
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset
have noise included. �e noise was purposefully added when
the data was being generated [9]. Noise can be bad for machine
learning models since the models may over-�t the noise of the
training data, which has no real in�uence on the underlying
phenomena. Filtering is a way to reduce the noise in the signals
and improve the model generalization. We chose to use a
median �lter, which is a sliding window �lter that suppresses
noise and outliers, as illustrated in Figure 4 for Engine 11 of
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided
the signals based on each unit within each node. �en we tried
kernel sizes k=3,5,7,9,11,…, Mk where Mk = , si being the
number of samples for unit i. �e best kernel for each unit was
selected as the one that maximizes the linear correlation
between the target (RUL) and the signal being analyzed. We
then took the weighted geometric average of all the kernels and
set it as the �nal kernel size to use. �e weight varied as the
correlation and the number of samples for the unit. �e best was
selected depending on the �nal model performance.

�e second technique used is a simple “pruning” technique,
which randomly removes some samples from the ends of the
sequences of some of the time series in the training set. �is
method is similar in execution to neural network pruning,
though the goal is to make the data more representative as
opposed to reducing complexity [19,20]. �is was done to
mimic the test set time series, which did not run until failure.
�e general idea was to prevent the model from over-�tting to a
time series that starts at full health and ends at critical failure.
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in
vastly di�erent scales, such as data taken from di�erent sensors
from di�erent jet engines in di�erent operating conditions [21].
�e di�ering scales and variances can cause the neural network
to unfairly bias certain dimensions in the data due to
undesirable reasons. We elected to use the popular z-score
normalization technique, which takes all dimensions in the data
and normalizes them to have approximately zero mean and

standard deviation of 1. �is creates an even playing �eld when
it comes to assigning neural network parameters during
optimization. To use this technique, we simply turn each
observation in each sample into a z-score. Let X be the set of all
observations for a certain feature in one of our agents, we can
�nd the z-score for the ith observation xi using:

 from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that
deal with the degradation of parts, we decided to use some
feature engineering techniques to add dimensions and new
predictors to our data. �e �rst technique is a simple
accumulation technique where we take the cumulative sum of
certain signals throughout the degradation process. �e second
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input
space can add helpful dimensions to our dataset [22]. We took a
similar approach by taking a simple, single-dimension,
single-time-step signed change calculation to some of our
features and added these as new features. �e single time step is
because we do not know how long the “cycle” time dimension is.
Given that most engines in the dataset fail within 200 cycles, it
is safe to say each cycle is a relatively large time step, such as
hours or even an entire �ight. �us, having too large of a
window may not capture meaningful change. �e following
snippet of code in Listing 2 demonstrates how the rate of change
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3
outline the optimal con�guration for the Long
Short-Term Memory (LSTM) network used in
predicting the Remaining Useful Life (RUL) of jet
engines within a federated learning framework. �e
model employs 4 LSTM layers and 4 dense layers,
each with 64 units per layer, which balances model
complexity and computational e�ciency. A batch
size 32 was selected, enabling e�cient training
while maintaining su�cient gradient updates. To
prevent over�tting, a dropout rate of 0.1 and a
recurrent dropout rate of 0.2 were applied, ensuring
robust generalization to unseen data. �e learning
rate was set to 0.001, a standard choice for achieving
stable convergence during training. Additionally,
Gaussian noise with a variance of 0.01 was
introduced to improve the model's generalization
by simulating slight variations in the input data.
�ese hyperparameters were �ne-tuned through
extensive experimentation using KerasTuner,
ensuring optimal performance for the predictive
maintenance task while preserving data privacy in a
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several
studies aggregated by Asif et al. and compared the results with
our federated averaged model results [1]. We used statistical
tests to compare these models. First, we ran two-tailed, equal
means tests for all of them without selecting an α value
beforehand. All the p-values were extremely low. �us, all of the
equal means hypotheses were rejected, suggesting that our
models either outperformed or underperformed against each
study.

 We then performed greater-than-or-equal-to and
less-than-or-equal-to one-tailed tests against each of the studies
and recorded the results. Table 5 below summarizes the studies
for which our model was statistically better on average. �e
study number refers to the order in which the study appears in
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set
performance for our agents and our aggregated model. We also

have graphical demonstrations in Figure 5 of how our model
predicts the degradation of the di�erent faults over time,
considering the di�erent conditions simulated within the
di�erent agents.

We also generated 95% con�dence intervals for the true mean
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average,
the FL approach either maintained or improved the model
performance. While the test error across the individual agents
showed signi�cant variance, the aggregated model
demonstrated the ability to generalize and balance the error
overall. �e variance in individual agent performance can be
explained by the operating conditions detailed in Table 1.
FD002 and FD004 are simulated with variance in six operating
conditions (altitude, pressure, air speed, etc.), while FD001 and
FD003 are simulated at sea level with no variance. �us, FD002
and FD004 performed 1.25-1.6 times worse than the other
agents. �e statistical analysis provided further insights into the
e�ectiveness of the FL model. By conducting two-tailed equal
means tests and greater-than-or-equal-to and less-than-or-
equal-to one-tailed tests, we were able to compare our model’s
performance against other studies. �e consistently low
p-values and the rejection of null hypotheses in several cases
suggest that our FL-based model either outperforms or is
comparable to existing methods in predictive maintenance. �is
statistical rigor con�rms that the federated approach not only
preserves data privacy but also maintains, if not improves,
model accuracy.

Conclusions
�is study explores the application of FL in PM tasks, focusing
on engine fault prediction using deep learning with LSTM cells.
�e primary motivation behind this work was to address the
challenges of maintaining data privacy while allowing
collaboration between entities with data silos. Our main
hypothesis was that implementing the FL framework would
either maintain or improve the model performance on average
when compared to the centralized learning approach. �e
implementation of FL o�ers several key advantages in the

context of predictive maintenance. Firstly, it preserves data
privacy by ensuring that sensitive data remains localized on the
devices where it is generated. �is is particularly important in
industries like aerospace, where operational data can include
proprietary and sensitive information. By minimizing the need
for data centralization, FL reduces the risk of data breaches
while allowing collaboration between entities that would
otherwise not be able to collaborate. However, the study also
highlights some challenges associated with the implementation
of FL in predictive maintenance. Managing the FL process
across multiple devices introduces complexity, particularly in
coordinating updates and maintaining consistent model
performance across diverse environments. Additionally, the
federated approach can lead to biased subsets of data at each
node, which may a�ect the generalization of the global model.
Despite these challenges, the ability to collaborate across
di�erent entities without sharing raw data opens new
possibilities for improving the maintenance models
industry-wide. �is collaborative approach can accelerate
advancements in predictive maintenance technologies,
bene�ting not just individual companies but the entire industry.

Declarations
�is project has no external funding, and all authors consent to
its publication. �e data was acquired from NASA PCoE under
a Public Domain License, and the code is available upon request.

References
1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA.

Communication-e�cient learning of deep networks from
decentralized data. InArti�cial intelligence and statistics; 2017.
1273-1282p. https://doi.org/10.48550/arXiv.1602.05629

2. Diamoutene A, Kamsu-Foguem B, Noureddine F, Barro D.
Prediction of US General Aviation fatalities from extreme value
approach. Transp Res A: Policy Pract. 2018;109:65-75. .
https://doi.org/10.1016/j.tra.2018.01.022

3. Yin X, Zhu Y, Hu J. A comprehensive survey of privacy-preserving
federated learning: A taxonomy, review, and future directions. ACM
Comput Surv. 2021;54(6):1-36. https://doi.org/10.1145/3460427

4. Tene O, Polonetsky J. Privacy in the age of big data: a time for big
decisions. Stan. L. Rev. Online. 2011;64:63.

5. Stanton I, Munir K, Ikram A, El‐Bakry M. Predictive maintenance
analytics and implementation for aircra�: Challenges and opportunities.
Syst Eng. 2023;26(2):216-237. https://doi.org/10.1002/sys.21651

6. Meissner R, Rahn A, Wicke K. Developing prescriptive
maintenance strategies in the aviation industry based on a
discrete-event simulation framework for post-prognostics decision
making. Reliab Eng Syst Saf. 2021;214:107812. .
https://doi.org/10.1016/j.ress.2021.107812

7. Jiang Y, Tran TH, Williams L. Machine learning and mixed reality for
smart aviation: Applications and challenges. J Air Transp Manage.
2023;111:102437. https://doi.org/10.1016/j.jairtraman.2023.102437

8. Asif O, Haider SA, Naqvi SR, Zaki JF, Kwak KS, Islam SR. A deep
learning model for remaining useful life prediction of aircra�
turbofan engine on C-MAPSS dataset. Ieee Access. 2022;10:95425-
95440. https://doi.org/10.1109/ACCESS.2022.3203406

9. Saxena A, Goebel K, Simon D, Eklund N. Damage propagation
modeling for aircra� engine run-to-failure simulation. In2008
international conference on prognostics and health management;
2008. 1-9p.

10. Botre M, Brentner KS, Horn JF, Wachspress D. Validation of
helicopter noise prediction system with �ight data. InVertical Flight
Society 75th Annual Forum & Technology Display; 2019.
https://doi.org/10.4050/F-0075-2019-14447

11. Ebrahimi A, Jafari S, Nikolaidis T. Heat load development and heat
map sensitivity analysis for civil aero-engines. Int J Turbomach
Propuls Power. 2024;9(3):25. https://doi.org/10.3390/ijtpp9030025

12. Wang J, Charles Z, Xu Z, Joshi G, McMahan HB, Al-Shedivat M, et
al. A �eld guide to federated optimization. arXiv preprint
arXiv:2107.06917. 2021. https://doi.org/10.48550/arXiv.2107.06917

13. Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G, Piccialli F. Model
aggregation techniques in federated learning: A comprehensive
survey. Future Gener Comput Syst. 2024;150:272-293. .
https://doi.org/10.1016/j.future.2023.09.008

14. Mu X, Shen Y, Cheng K, Geng X, Fu J, Zhang T, et al. Fedproc: Prototypical
contrastive federated learning on non-iid data. Future Gener Comput
Syst. 2023;143:93-104. https://doi.org/10.1016/j.future.2023.01.019

15. T Dinh C, Tran N, Nguyen J. Personalized federated learning with
moreau envelopes. Adv Neural Inf Process Syst. 2020;33:21394-1405.

16. Noh SH. Analysis of gradient vanishing of RNNs and performance
comparison. Information. 2021;12(11):442. .
https://doi.org/10.3390/info12110442

17. Kaur H, Virmani J, �akur S. A genetic algorithm-based
metaheuristic approach to customize a computer-aided classi�cation

system for enhanced screen �lm mammograms. InU-Healthcare
Monitoring Systems; 2019. 217-259p. .
https://doi.org/10.1016/B978-0-12-815370-3.00010-4

18. Kumar A, Sodhi SS. Comparative analysis of gaussian �lter, median
�lters and denoise autoenocoder. In2020 7th international conference
on computing for sustainable global development (INDIACom); 2020.
45-51p. https://doi.org/10.23919/INDIACom49435.2020.9083712

19. Li L, Zhu J, Sun MT. Deep learning based method for pruning deep
neural networks. In2019 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW); 2019. 312-317p.
https://doi.org/10.1109/ICMEW.2019.00-68

20. Pasandi MM, Hajabdollahi M, Karimi N, Samavi S. Modeling of pruning
techniques for deep neural networks simpli�cation. arXiv preprint
arXiv:2001.04062. 2020. https://doi.org/10.48550/arXiv.2001.04062

21. Sharma V. A study on data scaling methods for machine learning. Int J
Glob Acad Sci Res. 2022;1(1):31-42. https://doi.org/10.55938/ijgasr.v1i1.4

22. Mu X, Pavel AB, Kon M. Di�erentiation and integration of machine
learning feature vectors. In2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA);2016. 611-616p.

= ∑ ()2

 = ∑ | |

= − ∑ ()
∑ ()

J. Mach. Learn. Appl., 2025, 1, 17-24 © Reseapro Journals 2025
https://doi.org/10.61577/jmla.2025.100005

JOURNAL OF MACHINE LEARNING AND APPLICATIONS
2025, VOL. 1, ISSUE 1

20

Integrating privacy-preserving machine learning (ML)
techniques—particularly Federated Learning (FL)—into
Predictive Maintenance (PM), represents a signi�cant shi� in
how industrial operations manage maintenance and data
security. �is approach has broad implications for operational
e�ciency, data privacy, regulatory compliance, and
technological innovation. In FL, data are processed locally at the
device or server level, drastically reducing the risk of exposing
sensitive information during transmission or in a centralized
database [1]. �is is crucial for industries where operational
data may include proprietary or sensitive business information.
By minimizing data centralization, federated learning decreases
the vulnerability of systems to massive data breaches, a growing
concern with the increasing incidences of cyber-attacks. �is
work investigates the application of FL to PM tasks, focusing on
the utilization of Long Short-Term Memory (LSTM) networks
for predicting engine faults. Our research is motivated by the
increasing demand for e�cient PM methodologies that can
minimize downtime and reduce operational costs in various
industries [2]. Privacy-preserving ML enables real-time data
analysis directly on the machines where data is generated. �is
allows for immediate identi�cation of potential issues,
facilitating quicker responses to prevent failures. With the

ability to analyze data across a network of devices without
compromising privacy, organizations can optimize
maintenance schedules based on predictive insights, rather
than reactive or scheduled maintenance strategies. �is not
only extends the life of equipment but also reduces
unnecessary downtime. FL aligns with global data protection
regulations towards treating privacy as a fundamental human
right and establishing robust privacy protection mechanisms
in the era of arti�cial intelligence [3,4]. �e latest update of the
National Arti�cial Intelligence R&D Strategic Plan by the
White House in 2023 underscores the signi�cance of FL in
addressing data privacy and security concerns. 1�is plan
elaborates on long-term investment strategies in responsible
AI research, emphasizing the need for advancements in
privacy-preserving data sharing and the ongoing challenges
within FL. �e General Data Protection Regulation (GDPR)2
in Europe also emphasizes data minimization, privacy by
design, and the principle of processing data close to its source.
Since FL does not require data to leave its source, it simpli�es
compliance with laws that restrict cross-border data transfers,
making it an attractive option for multinational corporations.
In FL only essential model-related information is transmitted.
�erefore, FL can signi�cantly reduce the costs associated

with data transmission. In addition, by processing data locally
and not requiring a central repository for vast amounts of raw
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning,
we re�ne our models’ accuracy, utilizing FL to distribute the
computational load and enhance data privacy. �e results
section provides an in-depth analysis of the models’
performance. Federated learning allows for the development of
highly tailored models that learn from diverse data sources
without compromising sensitive information. �is capability
can drive innovation in PM technologies. Di�erent entities,
even competitors, can collaborate to improve predictive models
without sharing sensitive data, accelerating industry-wide
advancements in maintenance strategies. Managing FL across
many devices and locations introduces complexity, especially
when coordinating updates and maintaining consistent model
performance across diverse environments. Implementing an FL
system requires sophisticated infrastructure and a shi� in
traditional data management strategies, which might be
challenging for some organizations. �is study encompasses a
process validation section, where we underscore our
collaboration with industry experts to ensure that our research
objectives align with practical applications and that our �ndings
remain relevant. �e use of privacy-preserving ML and FL in
PM strengthens data security and enhances operational
e�ciencies and compliance with regulatory norms. �ese
technologies are setting new standards for how industries
approach maintenance tasks while safeguarding critical data. As
adoption grows, they could rede�ne best practices for asset
management across various sectors, promising a future where
PM is both more e�ective and inherently secure. In summary,
this study delves into the application of federated learning for
PM, presenting a structured approach to model development
employing LSTM networks. Our �ndings aim to contribute to
the ongoing discussion on the potential of FL in industrial
applications, particularly in enhancing PM strategies to achieve
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies:
reactive and proactive. Both are widely used due to their
di�erent advantages and disadvantages. Reactive maintenance
describes the process of waiting for the life cycle of a part of an
airplane subsystem to completely run out before repairing or
replacing the faulty components [5]. Proactive maintenance
describes the process of scheduling regular maintenance to
repair/replace components before they become faulty [6]. �e
advantage of reactive maintenance is that we can get 100% usage
out of our parts, but the obvious disadvantage is that there is a
high chance of component failure happening during �ights.
�is can work for something non-critical like overhead cockpit
lights, which would not force a �ight to be grounded if they
failed in �ight. On the other hand, something like a
High-Pressure Compressor (HPC) failure in �ight could prove
disastrous. In these scenarios, it is better to perform proactive
maintenance, where the disadvantage is that we lose some usage
from our components, but we limit the number of in-�ight
failures. In more recent years, with the advancements of ML,
PM has become more popular as a third approach where we can

use machine learning to schedule our maintenance for high-risk
systems and still get close to 100% usage with a low-error model
[7,8]. �ere are two main problems with this approach: small
�eets with small sample sizes to train their PM models and large
�eets unwilling to share their plentiful data with competitors
due to privacy concerns. �e work done in this study applies to
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE)
researchers conducted engine degradation simulations using
the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and
readily accessible on the NASA website, which can serve as a
valuable resource for studying and analyzing engine
degradation behaviors in various operational scenarios. �e
data was converted to .csv and is stored on our GitHub
repository.

 �e C-MAPSS dataset is an operational behavior dataset
from di�erent engines. It o�ers a detailed look into the normal
operational conditions of engines, including the presence of
noise. Each data entry in the dataset contains 26 columns,
encompassing information such as unit number, time cycles,
three operational settings, and 21 sensor measurements (see
Appendix A for details). �ese data snapshots, taken during
individual operational cycles, provide valuable insights into the
engine’s behavior. Table 1 provides detailed information about
each node. Sensor measurements are observed to be
contaminated with noise, which can potentially introduce
inaccuracies and inconsistencies in the data analysis process
[10].

 �e dataset is structured into four training and four testing
datasets, each with varying numbers of trajectories, conditions,
and fault modes. �e training sets are designed to showcase
examples of faults that grow in magnitude until system failure
occurs, providing valuable learning opportunities for predictive
maintenance and fault detection. �e testing sets may end
before system failure, allowing for the evaluation of predictive
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify
correlations between variables in a dataset, making them
particularly useful for analyzing relationships among sensor
measurements [11]. By plotting a heat map of the correlation
matrix, patterns of correlation (both positive and negative)
between pairs of variables can be easily visualized through color
gradients. In the plot below, the lightest (white/tan) and darkest
(black) colors indicate the highest linear correlation among

variables. �e orange/red color indicates there is little to no
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the
strongest relationships consisting of SM2, SM3, SM4, SM7,
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are
correlated with almost all sensor measurement except SM6,
SM9, and SM14. Regarding the trend, it seems like RUL has a
similar correlation trend with SM7, SM12, SM20, and SM21,
which can imply that RUL is mainly determined by SM7, SM12,
SM20, and SM21. �e other interesting part is that OS1 and OS2
do not have any relationship with the sensor measurements. In
FD002, the RUL has no relationship with any of the sensor
measurements. SM15 has the strongest relationship with every
other sensor measurement, but it seems like it has the opposite
trend compared to others. Every operational setting and sensor
measurements are correlated with each other except for the
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and
OS2 are a�ected by most of the sensor measurements. In
FD003, the heatmaps show similar trends and relationships
among the operational setting and sensor measurements as in
FD001. For FD004, the heatmaps show similar trends and
relationships among the operational setting and sensor
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor
measurements from column variables 6 to 26, with unclear
descriptions. �e operational settings are Mach Number (0 to
0.90), altitude (sea level to 40,000 feet), and sea-level
temperature (-60°F to 103°F). Upon further research, the labels
were identi�ed for the sensor measurements with an
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist
of all data up until each failure, and testing sets have the cut-o�
of some data before the failure. For example, in the training set
for FD001, all rows with unit = 1 are the data from the �rst

failure. �e last row of unit 1 has cycles = 192, which means the
engine failed a�er 192 operational cycles. For the testing set, the
last row of unit = 1 has cycle = 31, which is not when the failure
happened. �e separate RUL �les contain the number of cycles
until failure from the last sample for each test unit. In the case of
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data
privacy and security. It is particularly bene�cial in scenarios
where data con�dentiality is crucial in a highly sensitive
environment. �is approach was chosen because it helps
prevent data leakage and reverse engineering of the data.
However, the setup can lead to biased subsets of data at each
node, as the training data is not shareable. To address this, a
federated learning algorithm is employed. Initially, the server
sends instructions to each node to train a local model. �ese
local node models train on their respective data, and a�er a
training round, they only transmit their updated weights to the
central server. �e central server then aggregates these weights.

 �ere are several aggregation methods available in
Federated Learning (FL), each designed to address speci�c

challenges and requirements, such as Federated
Average (Fed Avg), FedProx, and personalized FL,
etc. FedAvg is one of the most widely used methods,
functioning as a generalized version of local-SGD,
which performs a weighted average of local model
parameters (weights) a�er a certain number of
optimization steps are performed by each model
[12]. �e weights for the average are determined as
seen �t by the implementation. �e combined
model is then transmitted back to the nodes, which
use the updated model parameters as a starting
point for another round of training [13]. �is
process continues for multiple rounds until the
global model converges. FedProx is a generalization
of FedAvg and is primarily designed to address
challenges associated with Independent and
Identically Distributed (non-IID) data, which
means data distributions vary signi�cantly across
devices. �is method introduces a proximal term to
the local optimization objective, which restricts the

local updates to remain close to the global model. �is
modi�cation improves stability and convergence in
heterogeneous environments, making it particularly e�ective for
applications with diverse data sources [14]. Another method is
Personalized Federated Learning (FL), an alternative aggregation
method that aims to train a model that depends on individual
user preferences or behaviors [15]. Unlike FedAvg and FedProx,
which aim to train a single global model, personalized FL allows
for the creation of customized models for each user or device.
�is is achieved by incorporating user-speci�c parameters or
�ne-tuning the global model locally to better adapt to individual
data distributions. Personalized FL is especially useful in
scenarios where user data exhibits signi�cant variability, such as
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is
FedAvg, where the weight is the number of data samples

available for training at each node. FedAvg is a well-established
theoretical foundation approach and simpler to implement
than the other approaches, which may require a more complex
mechanism for tailoring models to individual users.

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially
the work done in, we decided that the best technique to model
RUL is to use deep learning with LSTM neural network [8].
LSTM is a type of Recurrent Neural Network (RNN) that is
suitable for modeling events that happen in sequence. LSTM
avoids the common vanishing gradient problem by using gates
to store or forget information as needed [16]. �is allows LSTM
to learn long-term dependencies more e�ectively while having
the ability to forget learned relationships that no longer bene�t
the goal of minimizing loss. Each LSTM cell is composed of
three gates implemented as sigmoid functions. Data xt comes
into the cell, and becomes part of gt the candidate cell which
also has previous memory information. �e ft (forget) gate
decides what information should be forgotten; the it (input)
gate decides what information should be stored, and the ot (output) gate decides what information should be the output
from the cell. Hidden state St-1 and cell state Lt-1 contain the
short and long-term memory states from the previous cells
respectively. Figure 2 demonstrates the internal workings of a
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning
of our neural networks. �is module allows nearly limitless
customization of model tuning with skilled use of Python. See
the documentation of the Keras Tuner Python module for more
information on the usage. Table 2 below shows the exact
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine
learning, there are three main loss functions: Mean Squared
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2).
Let N be the number of prediction samples, ȳ be the mean of the
true values, yi and ŷⁱ be the true and predicted values at sample
i, respectively. �ese metrics are de�ned as:

 (1)

 (2)

 (3)

 MSE is a very punishing loss because it is non-linear with
respect to error size. For example, an error of 10 is 100 times
worse than an error of 1 because of the squaring. Additionally,
the use of the square changes the units of the error to squared
target units which may be di�cult to understand. Because of
this, Root-MSE is a popular choice: RMSE=√MSE. can be good
because it is recorded in the same units as the target variable
(engine cycles in our case); however, it is linearly punishing and
treats an error of qβ as being q times worse than an error of β
which may not be good in certain cases such as jet engine
failure. R2 is generally not chosen as a loss as it is di�cult to
understand it as a loss function and easy to manipulate by
adding more variables to our input and “curating” the validation
data to have low variance. However, given two models with the
same input variables evaluated on the same data, R2 can be a
good “tie-breaker” for similar RMSE or MAE. For the reasons
laid out above, we selected to use RMSE for the training and
validation loss of our models, but we reported MAE as our
second metric.

Model architecture
Derived from the work done in, we used a neural network
architecture in Figure 3 that leverages the recurrent capabilities
and robustness of LSTM cells with the approximation abilities
of fully connected layers [8]. �e dropout layers and recurrent
dropout in the LSTM are used to prevent over-�tting and
improve generalization on unseen data. �e Gaussian noise
layers are also generalization-aiding layers, as well as the
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal
performance in machine learning models, and it involves three
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset
have noise included. �e noise was purposefully added when
the data was being generated [9]. Noise can be bad for machine
learning models since the models may over-�t the noise of the
training data, which has no real in�uence on the underlying
phenomena. Filtering is a way to reduce the noise in the signals
and improve the model generalization. We chose to use a
median �lter, which is a sliding window �lter that suppresses
noise and outliers, as illustrated in Figure 4 for Engine 11 of
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided
the signals based on each unit within each node. �en we tried
kernel sizes k=3,5,7,9,11,…, Mk where Mk = , si being the
number of samples for unit i. �e best kernel for each unit was
selected as the one that maximizes the linear correlation
between the target (RUL) and the signal being analyzed. We
then took the weighted geometric average of all the kernels and
set it as the �nal kernel size to use. �e weight varied as the
correlation and the number of samples for the unit. �e best was
selected depending on the �nal model performance.

Figure 4. Example of Median Filter on HPC Static Pressure Signal for
FD002 Engine 11 Time Series.

�e second technique used is a simple “pruning” technique,
which randomly removes some samples from the ends of the
sequences of some of the time series in the training set. �is
method is similar in execution to neural network pruning,
though the goal is to make the data more representative as
opposed to reducing complexity [19,20]. �is was done to
mimic the test set time series, which did not run until failure.
�e general idea was to prevent the model from over-�tting to a
time series that starts at full health and ends at critical failure.
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in
vastly di�erent scales, such as data taken from di�erent sensors
from di�erent jet engines in di�erent operating conditions [21].
�e di�ering scales and variances can cause the neural network
to unfairly bias certain dimensions in the data due to
undesirable reasons. We elected to use the popular z-score
normalization technique, which takes all dimensions in the data
and normalizes them to have approximately zero mean and

standard deviation of 1. �is creates an even playing �eld when
it comes to assigning neural network parameters during
optimization. To use this technique, we simply turn each
observation in each sample into a z-score. Let X be the set of all
observations for a certain feature in one of our agents, we can
�nd the z-score for the ith observation xi using:

 from noise, outlier, and scale-related biases.

Listing 1. Pruning units

Feature engineering
Given that our dataset is made up of multiple time series that
deal with the degradation of parts, we decided to use some
feature engineering techniques to add dimensions and new
predictors to our data. �e �rst technique is a simple
accumulation technique where we take the cumulative sum of
certain signals throughout the degradation process. �e second
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input
space can add helpful dimensions to our dataset [22]. We took a
similar approach by taking a simple, single-dimension,
single-time-step signed change calculation to some of our
features and added these as new features. �e single time step is
because we do not know how long the “cycle” time dimension is.
Given that most engines in the dataset fail within 200 cycles, it
is safe to say each cycle is a relatively large time step, such as
hours or even an entire �ight. �us, having too large of a
window may not capture meaningful change. �e following
snippet of code in Listing 2 demonstrates how the rate of change
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3
outline the optimal con�guration for the Long
Short-Term Memory (LSTM) network used in
predicting the Remaining Useful Life (RUL) of jet
engines within a federated learning framework. �e
model employs 4 LSTM layers and 4 dense layers,
each with 64 units per layer, which balances model
complexity and computational e�ciency. A batch
size 32 was selected, enabling e�cient training
while maintaining su�cient gradient updates. To
prevent over�tting, a dropout rate of 0.1 and a
recurrent dropout rate of 0.2 were applied, ensuring
robust generalization to unseen data. �e learning
rate was set to 0.001, a standard choice for achieving
stable convergence during training. Additionally,
Gaussian noise with a variance of 0.01 was
introduced to improve the model's generalization
by simulating slight variations in the input data.
�ese hyperparameters were �ne-tuned through
extensive experimentation using KerasTuner,
ensuring optimal performance for the predictive
maintenance task while preserving data privacy in a
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several
studies aggregated by Asif et al. and compared the results with
our federated averaged model results [1]. We used statistical
tests to compare these models. First, we ran two-tailed, equal
means tests for all of them without selecting an α value
beforehand. All the p-values were extremely low. �us, all of the
equal means hypotheses were rejected, suggesting that our
models either outperformed or underperformed against each
study.

 We then performed greater-than-or-equal-to and
less-than-or-equal-to one-tailed tests against each of the studies
and recorded the results. Table 5 below summarizes the studies
for which our model was statistically better on average. �e
study number refers to the order in which the study appears in
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set
performance for our agents and our aggregated model. We also

have graphical demonstrations in Figure 5 of how our model
predicts the degradation of the di�erent faults over time,
considering the di�erent conditions simulated within the
di�erent agents.

We also generated 95% con�dence intervals for the true mean
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average,
the FL approach either maintained or improved the model
performance. While the test error across the individual agents
showed signi�cant variance, the aggregated model
demonstrated the ability to generalize and balance the error
overall. �e variance in individual agent performance can be
explained by the operating conditions detailed in Table 1.
FD002 and FD004 are simulated with variance in six operating
conditions (altitude, pressure, air speed, etc.), while FD001 and
FD003 are simulated at sea level with no variance. �us, FD002
and FD004 performed 1.25-1.6 times worse than the other
agents. �e statistical analysis provided further insights into the
e�ectiveness of the FL model. By conducting two-tailed equal
means tests and greater-than-or-equal-to and less-than-or-
equal-to one-tailed tests, we were able to compare our model’s
performance against other studies. �e consistently low
p-values and the rejection of null hypotheses in several cases
suggest that our FL-based model either outperforms or is
comparable to existing methods in predictive maintenance. �is
statistical rigor con�rms that the federated approach not only
preserves data privacy but also maintains, if not improves,
model accuracy.

Conclusions
�is study explores the application of FL in PM tasks, focusing
on engine fault prediction using deep learning with LSTM cells.
�e primary motivation behind this work was to address the
challenges of maintaining data privacy while allowing
collaboration between entities with data silos. Our main
hypothesis was that implementing the FL framework would
either maintain or improve the model performance on average
when compared to the centralized learning approach. �e
implementation of FL o�ers several key advantages in the

context of predictive maintenance. Firstly, it preserves data
privacy by ensuring that sensitive data remains localized on the
devices where it is generated. �is is particularly important in
industries like aerospace, where operational data can include
proprietary and sensitive information. By minimizing the need
for data centralization, FL reduces the risk of data breaches
while allowing collaboration between entities that would
otherwise not be able to collaborate. However, the study also
highlights some challenges associated with the implementation
of FL in predictive maintenance. Managing the FL process
across multiple devices introduces complexity, particularly in
coordinating updates and maintaining consistent model
performance across diverse environments. Additionally, the
federated approach can lead to biased subsets of data at each
node, which may a�ect the generalization of the global model.
Despite these challenges, the ability to collaborate across
di�erent entities without sharing raw data opens new
possibilities for improving the maintenance models
industry-wide. �is collaborative approach can accelerate
advancements in predictive maintenance technologies,
bene�ting not just individual companies but the entire industry.

Declarations
�is project has no external funding, and all authors consent to
its publication. �e data was acquired from NASA PCoE under
a Public Domain License, and the code is available upon request.

References
1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA.

Communication-e�cient learning of deep networks from
decentralized data. InArti�cial intelligence and statistics; 2017.
1273-1282p. https://doi.org/10.48550/arXiv.1602.05629

2. Diamoutene A, Kamsu-Foguem B, Noureddine F, Barro D.
Prediction of US General Aviation fatalities from extreme value
approach. Transp Res A: Policy Pract. 2018;109:65-75. .
https://doi.org/10.1016/j.tra.2018.01.022

3. Yin X, Zhu Y, Hu J. A comprehensive survey of privacy-preserving
federated learning: A taxonomy, review, and future directions. ACM
Comput Surv. 2021;54(6):1-36. https://doi.org/10.1145/3460427

4. Tene O, Polonetsky J. Privacy in the age of big data: a time for big
decisions. Stan. L. Rev. Online. 2011;64:63.

5. Stanton I, Munir K, Ikram A, El‐Bakry M. Predictive maintenance
analytics and implementation for aircra�: Challenges and opportunities.
Syst Eng. 2023;26(2):216-237. https://doi.org/10.1002/sys.21651

6. Meissner R, Rahn A, Wicke K. Developing prescriptive
maintenance strategies in the aviation industry based on a
discrete-event simulation framework for post-prognostics decision
making. Reliab Eng Syst Saf. 2021;214:107812. .
https://doi.org/10.1016/j.ress.2021.107812

7. Jiang Y, Tran TH, Williams L. Machine learning and mixed reality for
smart aviation: Applications and challenges. J Air Transp Manage.
2023;111:102437. https://doi.org/10.1016/j.jairtraman.2023.102437

8. Asif O, Haider SA, Naqvi SR, Zaki JF, Kwak KS, Islam SR. A deep
learning model for remaining useful life prediction of aircra�
turbofan engine on C-MAPSS dataset. Ieee Access. 2022;10:95425-
95440. https://doi.org/10.1109/ACCESS.2022.3203406

9. Saxena A, Goebel K, Simon D, Eklund N. Damage propagation
modeling for aircra� engine run-to-failure simulation. In2008
international conference on prognostics and health management;
2008. 1-9p.

10. Botre M, Brentner KS, Horn JF, Wachspress D. Validation of
helicopter noise prediction system with �ight data. InVertical Flight
Society 75th Annual Forum & Technology Display; 2019.
https://doi.org/10.4050/F-0075-2019-14447

11. Ebrahimi A, Jafari S, Nikolaidis T. Heat load development and heat
map sensitivity analysis for civil aero-engines. Int J Turbomach
Propuls Power. 2024;9(3):25. https://doi.org/10.3390/ijtpp9030025

12. Wang J, Charles Z, Xu Z, Joshi G, McMahan HB, Al-Shedivat M, et
al. A �eld guide to federated optimization. arXiv preprint
arXiv:2107.06917. 2021. https://doi.org/10.48550/arXiv.2107.06917

13. Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G, Piccialli F. Model
aggregation techniques in federated learning: A comprehensive
survey. Future Gener Comput Syst. 2024;150:272-293. .
https://doi.org/10.1016/j.future.2023.09.008

14. Mu X, Shen Y, Cheng K, Geng X, Fu J, Zhang T, et al. Fedproc: Prototypical
contrastive federated learning on non-iid data. Future Gener Comput
Syst. 2023;143:93-104. https://doi.org/10.1016/j.future.2023.01.019

15. T Dinh C, Tran N, Nguyen J. Personalized federated learning with
moreau envelopes. Adv Neural Inf Process Syst. 2020;33:21394-1405.

16. Noh SH. Analysis of gradient vanishing of RNNs and performance
comparison. Information. 2021;12(11):442. .
https://doi.org/10.3390/info12110442

17. Kaur H, Virmani J, �akur S. A genetic algorithm-based
metaheuristic approach to customize a computer-aided classi�cation

system for enhanced screen �lm mammograms. InU-Healthcare
Monitoring Systems; 2019. 217-259p. .
https://doi.org/10.1016/B978-0-12-815370-3.00010-4

18. Kumar A, Sodhi SS. Comparative analysis of gaussian �lter, median
�lters and denoise autoenocoder. In2020 7th international conference
on computing for sustainable global development (INDIACom); 2020.
45-51p. https://doi.org/10.23919/INDIACom49435.2020.9083712

19. Li L, Zhu J, Sun MT. Deep learning based method for pruning deep
neural networks. In2019 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW); 2019. 312-317p.
https://doi.org/10.1109/ICMEW.2019.00-68

20. Pasandi MM, Hajabdollahi M, Karimi N, Samavi S. Modeling of pruning
techniques for deep neural networks simpli�cation. arXiv preprint
arXiv:2001.04062. 2020. https://doi.org/10.48550/arXiv.2001.04062

21. Sharma V. A study on data scaling methods for machine learning. Int J
Glob Acad Sci Res. 2022;1(1):31-42. https://doi.org/10.55938/ijgasr.v1i1.4

22. Mu X, Pavel AB, Kon M. Di�erentiation and integration of machine
learning feature vectors. In2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA);2016. 611-616p.

[]

 =
̅

J. Mach. Learn. Appl., 2025, 1, 17-24 © Reseapro Journals 2025
https://doi.org/10.61577/jmla.2025.100005

JOURNAL OF MACHINE LEARNING AND APPLICATIONS
2025, VOL. 1, ISSUE 1

21

Integrating privacy-preserving machine learning (ML)
techniques—particularly Federated Learning (FL)—into
Predictive Maintenance (PM), represents a signi�cant shi� in
how industrial operations manage maintenance and data
security. �is approach has broad implications for operational
e�ciency, data privacy, regulatory compliance, and
technological innovation. In FL, data are processed locally at the
device or server level, drastically reducing the risk of exposing
sensitive information during transmission or in a centralized
database [1]. �is is crucial for industries where operational
data may include proprietary or sensitive business information.
By minimizing data centralization, federated learning decreases
the vulnerability of systems to massive data breaches, a growing
concern with the increasing incidences of cyber-attacks. �is
work investigates the application of FL to PM tasks, focusing on
the utilization of Long Short-Term Memory (LSTM) networks
for predicting engine faults. Our research is motivated by the
increasing demand for e�cient PM methodologies that can
minimize downtime and reduce operational costs in various
industries [2]. Privacy-preserving ML enables real-time data
analysis directly on the machines where data is generated. �is
allows for immediate identi�cation of potential issues,
facilitating quicker responses to prevent failures. With the

ability to analyze data across a network of devices without
compromising privacy, organizations can optimize
maintenance schedules based on predictive insights, rather
than reactive or scheduled maintenance strategies. �is not
only extends the life of equipment but also reduces
unnecessary downtime. FL aligns with global data protection
regulations towards treating privacy as a fundamental human
right and establishing robust privacy protection mechanisms
in the era of arti�cial intelligence [3,4]. �e latest update of the
National Arti�cial Intelligence R&D Strategic Plan by the
White House in 2023 underscores the signi�cance of FL in
addressing data privacy and security concerns. 1�is plan
elaborates on long-term investment strategies in responsible
AI research, emphasizing the need for advancements in
privacy-preserving data sharing and the ongoing challenges
within FL. �e General Data Protection Regulation (GDPR)2
in Europe also emphasizes data minimization, privacy by
design, and the principle of processing data close to its source.
Since FL does not require data to leave its source, it simpli�es
compliance with laws that restrict cross-border data transfers,
making it an attractive option for multinational corporations.
In FL only essential model-related information is transmitted.
�erefore, FL can signi�cantly reduce the costs associated

with data transmission. In addition, by processing data locally
and not requiring a central repository for vast amounts of raw
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning,
we re�ne our models’ accuracy, utilizing FL to distribute the
computational load and enhance data privacy. �e results
section provides an in-depth analysis of the models’
performance. Federated learning allows for the development of
highly tailored models that learn from diverse data sources
without compromising sensitive information. �is capability
can drive innovation in PM technologies. Di�erent entities,
even competitors, can collaborate to improve predictive models
without sharing sensitive data, accelerating industry-wide
advancements in maintenance strategies. Managing FL across
many devices and locations introduces complexity, especially
when coordinating updates and maintaining consistent model
performance across diverse environments. Implementing an FL
system requires sophisticated infrastructure and a shi� in
traditional data management strategies, which might be
challenging for some organizations. �is study encompasses a
process validation section, where we underscore our
collaboration with industry experts to ensure that our research
objectives align with practical applications and that our �ndings
remain relevant. �e use of privacy-preserving ML and FL in
PM strengthens data security and enhances operational
e�ciencies and compliance with regulatory norms. �ese
technologies are setting new standards for how industries
approach maintenance tasks while safeguarding critical data. As
adoption grows, they could rede�ne best practices for asset
management across various sectors, promising a future where
PM is both more e�ective and inherently secure. In summary,
this study delves into the application of federated learning for
PM, presenting a structured approach to model development
employing LSTM networks. Our �ndings aim to contribute to
the ongoing discussion on the potential of FL in industrial
applications, particularly in enhancing PM strategies to achieve
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies:
reactive and proactive. Both are widely used due to their
di�erent advantages and disadvantages. Reactive maintenance
describes the process of waiting for the life cycle of a part of an
airplane subsystem to completely run out before repairing or
replacing the faulty components [5]. Proactive maintenance
describes the process of scheduling regular maintenance to
repair/replace components before they become faulty [6]. �e
advantage of reactive maintenance is that we can get 100% usage
out of our parts, but the obvious disadvantage is that there is a
high chance of component failure happening during �ights.
�is can work for something non-critical like overhead cockpit
lights, which would not force a �ight to be grounded if they
failed in �ight. On the other hand, something like a
High-Pressure Compressor (HPC) failure in �ight could prove
disastrous. In these scenarios, it is better to perform proactive
maintenance, where the disadvantage is that we lose some usage
from our components, but we limit the number of in-�ight
failures. In more recent years, with the advancements of ML,
PM has become more popular as a third approach where we can

use machine learning to schedule our maintenance for high-risk
systems and still get close to 100% usage with a low-error model
[7,8]. �ere are two main problems with this approach: small
�eets with small sample sizes to train their PM models and large
�eets unwilling to share their plentiful data with competitors
due to privacy concerns. �e work done in this study applies to
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE)
researchers conducted engine degradation simulations using
the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and
readily accessible on the NASA website, which can serve as a
valuable resource for studying and analyzing engine
degradation behaviors in various operational scenarios. �e
data was converted to .csv and is stored on our GitHub
repository.

 �e C-MAPSS dataset is an operational behavior dataset
from di�erent engines. It o�ers a detailed look into the normal
operational conditions of engines, including the presence of
noise. Each data entry in the dataset contains 26 columns,
encompassing information such as unit number, time cycles,
three operational settings, and 21 sensor measurements (see
Appendix A for details). �ese data snapshots, taken during
individual operational cycles, provide valuable insights into the
engine’s behavior. Table 1 provides detailed information about
each node. Sensor measurements are observed to be
contaminated with noise, which can potentially introduce
inaccuracies and inconsistencies in the data analysis process
[10].

 �e dataset is structured into four training and four testing
datasets, each with varying numbers of trajectories, conditions,
and fault modes. �e training sets are designed to showcase
examples of faults that grow in magnitude until system failure
occurs, providing valuable learning opportunities for predictive
maintenance and fault detection. �e testing sets may end
before system failure, allowing for the evaluation of predictive
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify
correlations between variables in a dataset, making them
particularly useful for analyzing relationships among sensor
measurements [11]. By plotting a heat map of the correlation
matrix, patterns of correlation (both positive and negative)
between pairs of variables can be easily visualized through color
gradients. In the plot below, the lightest (white/tan) and darkest
(black) colors indicate the highest linear correlation among

variables. �e orange/red color indicates there is little to no
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the
strongest relationships consisting of SM2, SM3, SM4, SM7,
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are
correlated with almost all sensor measurement except SM6,
SM9, and SM14. Regarding the trend, it seems like RUL has a
similar correlation trend with SM7, SM12, SM20, and SM21,
which can imply that RUL is mainly determined by SM7, SM12,
SM20, and SM21. �e other interesting part is that OS1 and OS2
do not have any relationship with the sensor measurements. In
FD002, the RUL has no relationship with any of the sensor
measurements. SM15 has the strongest relationship with every
other sensor measurement, but it seems like it has the opposite
trend compared to others. Every operational setting and sensor
measurements are correlated with each other except for the
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and
OS2 are a�ected by most of the sensor measurements. In
FD003, the heatmaps show similar trends and relationships
among the operational setting and sensor measurements as in
FD001. For FD004, the heatmaps show similar trends and
relationships among the operational setting and sensor
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor
measurements from column variables 6 to 26, with unclear
descriptions. �e operational settings are Mach Number (0 to
0.90), altitude (sea level to 40,000 feet), and sea-level
temperature (-60°F to 103°F). Upon further research, the labels
were identi�ed for the sensor measurements with an
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist
of all data up until each failure, and testing sets have the cut-o�
of some data before the failure. For example, in the training set
for FD001, all rows with unit = 1 are the data from the �rst

failure. �e last row of unit 1 has cycles = 192, which means the
engine failed a�er 192 operational cycles. For the testing set, the
last row of unit = 1 has cycle = 31, which is not when the failure
happened. �e separate RUL �les contain the number of cycles
until failure from the last sample for each test unit. In the case of
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data
privacy and security. It is particularly bene�cial in scenarios
where data con�dentiality is crucial in a highly sensitive
environment. �is approach was chosen because it helps
prevent data leakage and reverse engineering of the data.
However, the setup can lead to biased subsets of data at each
node, as the training data is not shareable. To address this, a
federated learning algorithm is employed. Initially, the server
sends instructions to each node to train a local model. �ese
local node models train on their respective data, and a�er a
training round, they only transmit their updated weights to the
central server. �e central server then aggregates these weights.

 �ere are several aggregation methods available in
Federated Learning (FL), each designed to address speci�c

challenges and requirements, such as Federated
Average (Fed Avg), FedProx, and personalized FL,
etc. FedAvg is one of the most widely used methods,
functioning as a generalized version of local-SGD,
which performs a weighted average of local model
parameters (weights) a�er a certain number of
optimization steps are performed by each model
[12]. �e weights for the average are determined as
seen �t by the implementation. �e combined
model is then transmitted back to the nodes, which
use the updated model parameters as a starting
point for another round of training [13]. �is
process continues for multiple rounds until the
global model converges. FedProx is a generalization
of FedAvg and is primarily designed to address
challenges associated with Independent and
Identically Distributed (non-IID) data, which
means data distributions vary signi�cantly across
devices. �is method introduces a proximal term to
the local optimization objective, which restricts the

local updates to remain close to the global model. �is
modi�cation improves stability and convergence in
heterogeneous environments, making it particularly e�ective for
applications with diverse data sources [14]. Another method is
Personalized Federated Learning (FL), an alternative aggregation
method that aims to train a model that depends on individual
user preferences or behaviors [15]. Unlike FedAvg and FedProx,
which aim to train a single global model, personalized FL allows
for the creation of customized models for each user or device.
�is is achieved by incorporating user-speci�c parameters or
�ne-tuning the global model locally to better adapt to individual
data distributions. Personalized FL is especially useful in
scenarios where user data exhibits signi�cant variability, such as
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is
FedAvg, where the weight is the number of data samples

available for training at each node. FedAvg is a well-established
theoretical foundation approach and simpler to implement
than the other approaches, which may require a more complex
mechanism for tailoring models to individual users.

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially
the work done in, we decided that the best technique to model
RUL is to use deep learning with LSTM neural network [8].
LSTM is a type of Recurrent Neural Network (RNN) that is
suitable for modeling events that happen in sequence. LSTM
avoids the common vanishing gradient problem by using gates
to store or forget information as needed [16]. �is allows LSTM
to learn long-term dependencies more e�ectively while having
the ability to forget learned relationships that no longer bene�t
the goal of minimizing loss. Each LSTM cell is composed of
three gates implemented as sigmoid functions. Data xt comes
into the cell, and becomes part of gt the candidate cell which
also has previous memory information. �e ft (forget) gate
decides what information should be forgotten; the it (input)
gate decides what information should be stored, and the ot (output) gate decides what information should be the output
from the cell. Hidden state St-1 and cell state Lt-1 contain the
short and long-term memory states from the previous cells
respectively. Figure 2 demonstrates the internal workings of a
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning
of our neural networks. �is module allows nearly limitless
customization of model tuning with skilled use of Python. See
the documentation of the Keras Tuner Python module for more
information on the usage. Table 2 below shows the exact
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine
learning, there are three main loss functions: Mean Squared
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2).
Let N be the number of prediction samples, ȳ be the mean of the
true values, yi and ŷⁱ be the true and predicted values at sample
i, respectively. �ese metrics are de�ned as:

 (1)

 (2)

 (3)

 MSE is a very punishing loss because it is non-linear with
respect to error size. For example, an error of 10 is 100 times
worse than an error of 1 because of the squaring. Additionally,
the use of the square changes the units of the error to squared
target units which may be di�cult to understand. Because of
this, Root-MSE is a popular choice: RMSE=√MSE. can be good
because it is recorded in the same units as the target variable
(engine cycles in our case); however, it is linearly punishing and
treats an error of qβ as being q times worse than an error of β
which may not be good in certain cases such as jet engine
failure. R2 is generally not chosen as a loss as it is di�cult to
understand it as a loss function and easy to manipulate by
adding more variables to our input and “curating” the validation
data to have low variance. However, given two models with the
same input variables evaluated on the same data, R2 can be a
good “tie-breaker” for similar RMSE or MAE. For the reasons
laid out above, we selected to use RMSE for the training and
validation loss of our models, but we reported MAE as our
second metric.

Model architecture
Derived from the work done in, we used a neural network
architecture in Figure 3 that leverages the recurrent capabilities
and robustness of LSTM cells with the approximation abilities
of fully connected layers [8]. �e dropout layers and recurrent
dropout in the LSTM are used to prevent over-�tting and
improve generalization on unseen data. �e Gaussian noise
layers are also generalization-aiding layers, as well as the
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal
performance in machine learning models, and it involves three
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset
have noise included. �e noise was purposefully added when
the data was being generated [9]. Noise can be bad for machine
learning models since the models may over-�t the noise of the
training data, which has no real in�uence on the underlying
phenomena. Filtering is a way to reduce the noise in the signals
and improve the model generalization. We chose to use a
median �lter, which is a sliding window �lter that suppresses
noise and outliers, as illustrated in Figure 4 for Engine 11 of
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided
the signals based on each unit within each node. �en we tried
kernel sizes k=3,5,7,9,11,…, Mk where Mk = , si being the
number of samples for unit i. �e best kernel for each unit was
selected as the one that maximizes the linear correlation
between the target (RUL) and the signal being analyzed. We
then took the weighted geometric average of all the kernels and
set it as the �nal kernel size to use. �e weight varied as the
correlation and the number of samples for the unit. �e best was
selected depending on the �nal model performance.

�e second technique used is a simple “pruning” technique,
which randomly removes some samples from the ends of the
sequences of some of the time series in the training set. �is
method is similar in execution to neural network pruning,
though the goal is to make the data more representative as
opposed to reducing complexity [19,20]. �is was done to
mimic the test set time series, which did not run until failure.
�e general idea was to prevent the model from over-�tting to a
time series that starts at full health and ends at critical failure.
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in
vastly di�erent scales, such as data taken from di�erent sensors
from di�erent jet engines in di�erent operating conditions [21].
�e di�ering scales and variances can cause the neural network
to unfairly bias certain dimensions in the data due to
undesirable reasons. We elected to use the popular z-score
normalization technique, which takes all dimensions in the data
and normalizes them to have approximately zero mean and

standard deviation of 1. �is creates an even playing �eld when
it comes to assigning neural network parameters during
optimization. To use this technique, we simply turn each
observation in each sample into a z-score. Let X be the set of all
observations for a certain feature in one of our agents, we can
�nd the z-score for the ith observation xi using:

 from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that
deal with the degradation of parts, we decided to use some
feature engineering techniques to add dimensions and new
predictors to our data. �e �rst technique is a simple
accumulation technique where we take the cumulative sum of
certain signals throughout the degradation process. �e second
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input
space can add helpful dimensions to our dataset [22]. We took a
similar approach by taking a simple, single-dimension,
single-time-step signed change calculation to some of our
features and added these as new features. �e single time step is
because we do not know how long the “cycle” time dimension is.
Given that most engines in the dataset fail within 200 cycles, it
is safe to say each cycle is a relatively large time step, such as
hours or even an entire �ight. �us, having too large of a
window may not capture meaningful change. �e following
snippet of code in Listing 2 demonstrates how the rate of change
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3
outline the optimal con�guration for the Long
Short-Term Memory (LSTM) network used in
predicting the Remaining Useful Life (RUL) of jet
engines within a federated learning framework. �e
model employs 4 LSTM layers and 4 dense layers,
each with 64 units per layer, which balances model
complexity and computational e�ciency. A batch
size 32 was selected, enabling e�cient training
while maintaining su�cient gradient updates. To
prevent over�tting, a dropout rate of 0.1 and a
recurrent dropout rate of 0.2 were applied, ensuring
robust generalization to unseen data. �e learning
rate was set to 0.001, a standard choice for achieving
stable convergence during training. Additionally,
Gaussian noise with a variance of 0.01 was
introduced to improve the model's generalization
by simulating slight variations in the input data.
�ese hyperparameters were �ne-tuned through
extensive experimentation using KerasTuner,
ensuring optimal performance for the predictive
maintenance task while preserving data privacy in a
federated learning setup.

Hyper-parameter Name Best Values
LSTM Layers 4
Dense Layers 4

Units Per Layer 64
Batch Size 32
Layer Dropout 0.1
Recurrent Dropout 0.2
Learning Rate 0.001
Gaussian Noise 0.01

Table 3. Hyperparameter selection

Listing 2. Rate of Change

Agent Validation RMSE Test RMSE

FD001 13.7014 13.811

FD002 14.6618 20.587

FD003 14.3186 14.201

FD004 18.1955 22.998

Aggregated 15.2193 17.899

Table 4. Validation and Test Performance

Statistical Analysis
We averaged the results across the di�erent agents over several
studies aggregated by Asif et al. and compared the results with
our federated averaged model results [1]. We used statistical
tests to compare these models. First, we ran two-tailed, equal
means tests for all of them without selecting an α value
beforehand. All the p-values were extremely low. �us, all of the
equal means hypotheses were rejected, suggesting that our
models either outperformed or underperformed against each
study.

 We then performed greater-than-or-equal-to and
less-than-or-equal-to one-tailed tests against each of the studies
and recorded the results. Table 5 below summarizes the studies
for which our model was statistically better on average. �e
study number refers to the order in which the study appears in
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set
performance for our agents and our aggregated model. We also

have graphical demonstrations in Figure 5 of how our model
predicts the degradation of the di�erent faults over time,
considering the di�erent conditions simulated within the
di�erent agents.

Figure 5. Testing set predictions for (a)FD001, (b)FD002, (c)FD003,
and (d)FD004.

We also generated 95% con�dence intervals for the true mean
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average,
the FL approach either maintained or improved the model
performance. While the test error across the individual agents
showed signi�cant variance, the aggregated model
demonstrated the ability to generalize and balance the error
overall. �e variance in individual agent performance can be
explained by the operating conditions detailed in Table 1.
FD002 and FD004 are simulated with variance in six operating
conditions (altitude, pressure, air speed, etc.), while FD001 and
FD003 are simulated at sea level with no variance. �us, FD002
and FD004 performed 1.25-1.6 times worse than the other
agents. �e statistical analysis provided further insights into the
e�ectiveness of the FL model. By conducting two-tailed equal
means tests and greater-than-or-equal-to and less-than-or-
equal-to one-tailed tests, we were able to compare our model’s
performance against other studies. �e consistently low
p-values and the rejection of null hypotheses in several cases
suggest that our FL-based model either outperforms or is
comparable to existing methods in predictive maintenance. �is
statistical rigor con�rms that the federated approach not only
preserves data privacy but also maintains, if not improves,
model accuracy.

Conclusions
�is study explores the application of FL in PM tasks, focusing
on engine fault prediction using deep learning with LSTM cells.
�e primary motivation behind this work was to address the
challenges of maintaining data privacy while allowing
collaboration between entities with data silos. Our main
hypothesis was that implementing the FL framework would
either maintain or improve the model performance on average
when compared to the centralized learning approach. �e
implementation of FL o�ers several key advantages in the

context of predictive maintenance. Firstly, it preserves data
privacy by ensuring that sensitive data remains localized on the
devices where it is generated. �is is particularly important in
industries like aerospace, where operational data can include
proprietary and sensitive information. By minimizing the need
for data centralization, FL reduces the risk of data breaches
while allowing collaboration between entities that would
otherwise not be able to collaborate. However, the study also
highlights some challenges associated with the implementation
of FL in predictive maintenance. Managing the FL process
across multiple devices introduces complexity, particularly in
coordinating updates and maintaining consistent model
performance across diverse environments. Additionally, the
federated approach can lead to biased subsets of data at each
node, which may a�ect the generalization of the global model.
Despite these challenges, the ability to collaborate across
di�erent entities without sharing raw data opens new
possibilities for improving the maintenance models
industry-wide. �is collaborative approach can accelerate
advancements in predictive maintenance technologies,
bene�ting not just individual companies but the entire industry.

Declarations
�is project has no external funding, and all authors consent to
its publication. �e data was acquired from NASA PCoE under
a Public Domain License, and the code is available upon request.

References
1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA.

Communication-e�cient learning of deep networks from
decentralized data. InArti�cial intelligence and statistics; 2017.
1273-1282p. https://doi.org/10.48550/arXiv.1602.05629

2. Diamoutene A, Kamsu-Foguem B, Noureddine F, Barro D.
Prediction of US General Aviation fatalities from extreme value
approach. Transp Res A: Policy Pract. 2018;109:65-75. .
https://doi.org/10.1016/j.tra.2018.01.022

3. Yin X, Zhu Y, Hu J. A comprehensive survey of privacy-preserving
federated learning: A taxonomy, review, and future directions. ACM
Comput Surv. 2021;54(6):1-36. https://doi.org/10.1145/3460427

4. Tene O, Polonetsky J. Privacy in the age of big data: a time for big
decisions. Stan. L. Rev. Online. 2011;64:63.

5. Stanton I, Munir K, Ikram A, El‐Bakry M. Predictive maintenance
analytics and implementation for aircra�: Challenges and opportunities.
Syst Eng. 2023;26(2):216-237. https://doi.org/10.1002/sys.21651

6. Meissner R, Rahn A, Wicke K. Developing prescriptive
maintenance strategies in the aviation industry based on a
discrete-event simulation framework for post-prognostics decision
making. Reliab Eng Syst Saf. 2021;214:107812. .
https://doi.org/10.1016/j.ress.2021.107812

7. Jiang Y, Tran TH, Williams L. Machine learning and mixed reality for
smart aviation: Applications and challenges. J Air Transp Manage.
2023;111:102437. https://doi.org/10.1016/j.jairtraman.2023.102437

8. Asif O, Haider SA, Naqvi SR, Zaki JF, Kwak KS, Islam SR. A deep
learning model for remaining useful life prediction of aircra�
turbofan engine on C-MAPSS dataset. Ieee Access. 2022;10:95425-
95440. https://doi.org/10.1109/ACCESS.2022.3203406

9. Saxena A, Goebel K, Simon D, Eklund N. Damage propagation
modeling for aircra� engine run-to-failure simulation. In2008
international conference on prognostics and health management;
2008. 1-9p.

10. Botre M, Brentner KS, Horn JF, Wachspress D. Validation of
helicopter noise prediction system with �ight data. InVertical Flight
Society 75th Annual Forum & Technology Display; 2019.
https://doi.org/10.4050/F-0075-2019-14447

11. Ebrahimi A, Jafari S, Nikolaidis T. Heat load development and heat
map sensitivity analysis for civil aero-engines. Int J Turbomach
Propuls Power. 2024;9(3):25. https://doi.org/10.3390/ijtpp9030025

12. Wang J, Charles Z, Xu Z, Joshi G, McMahan HB, Al-Shedivat M, et
al. A �eld guide to federated optimization. arXiv preprint
arXiv:2107.06917. 2021. https://doi.org/10.48550/arXiv.2107.06917

13. Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G, Piccialli F. Model
aggregation techniques in federated learning: A comprehensive
survey. Future Gener Comput Syst. 2024;150:272-293. .
https://doi.org/10.1016/j.future.2023.09.008

14. Mu X, Shen Y, Cheng K, Geng X, Fu J, Zhang T, et al. Fedproc: Prototypical
contrastive federated learning on non-iid data. Future Gener Comput
Syst. 2023;143:93-104. https://doi.org/10.1016/j.future.2023.01.019

15. T Dinh C, Tran N, Nguyen J. Personalized federated learning with
moreau envelopes. Adv Neural Inf Process Syst. 2020;33:21394-1405.

16. Noh SH. Analysis of gradient vanishing of RNNs and performance
comparison. Information. 2021;12(11):442. .
https://doi.org/10.3390/info12110442

17. Kaur H, Virmani J, �akur S. A genetic algorithm-based
metaheuristic approach to customize a computer-aided classi�cation

system for enhanced screen �lm mammograms. InU-Healthcare
Monitoring Systems; 2019. 217-259p. .
https://doi.org/10.1016/B978-0-12-815370-3.00010-4

18. Kumar A, Sodhi SS. Comparative analysis of gaussian �lter, median
�lters and denoise autoenocoder. In2020 7th international conference
on computing for sustainable global development (INDIACom); 2020.
45-51p. https://doi.org/10.23919/INDIACom49435.2020.9083712

19. Li L, Zhu J, Sun MT. Deep learning based method for pruning deep
neural networks. In2019 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW); 2019. 312-317p.
https://doi.org/10.1109/ICMEW.2019.00-68

20. Pasandi MM, Hajabdollahi M, Karimi N, Samavi S. Modeling of pruning
techniques for deep neural networks simpli�cation. arXiv preprint
arXiv:2001.04062. 2020. https://doi.org/10.48550/arXiv.2001.04062

21. Sharma V. A study on data scaling methods for machine learning. Int J
Glob Acad Sci Res. 2022;1(1):31-42. https://doi.org/10.55938/ijgasr.v1i1.4

22. Mu X, Pavel AB, Kon M. Di�erentiation and integration of machine
learning feature vectors. In2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA);2016. 611-616p.

J. Mach. Learn. Appl., 2025, 1, 17-24 © Reseapro Journals 2025
https://doi.org/10.61577/jmla.2025.100005

JOURNAL OF MACHINE LEARNING AND APPLICATIONS
2025, VOL. 1, ISSUE 1

22

Integrating privacy-preserving machine learning (ML)
techniques—particularly Federated Learning (FL)—into
Predictive Maintenance (PM), represents a signi�cant shi� in
how industrial operations manage maintenance and data
security. �is approach has broad implications for operational
e�ciency, data privacy, regulatory compliance, and
technological innovation. In FL, data are processed locally at the
device or server level, drastically reducing the risk of exposing
sensitive information during transmission or in a centralized
database [1]. �is is crucial for industries where operational
data may include proprietary or sensitive business information.
By minimizing data centralization, federated learning decreases
the vulnerability of systems to massive data breaches, a growing
concern with the increasing incidences of cyber-attacks. �is
work investigates the application of FL to PM tasks, focusing on
the utilization of Long Short-Term Memory (LSTM) networks
for predicting engine faults. Our research is motivated by the
increasing demand for e�cient PM methodologies that can
minimize downtime and reduce operational costs in various
industries [2]. Privacy-preserving ML enables real-time data
analysis directly on the machines where data is generated. �is
allows for immediate identi�cation of potential issues,
facilitating quicker responses to prevent failures. With the

ability to analyze data across a network of devices without
compromising privacy, organizations can optimize
maintenance schedules based on predictive insights, rather
than reactive or scheduled maintenance strategies. �is not
only extends the life of equipment but also reduces
unnecessary downtime. FL aligns with global data protection
regulations towards treating privacy as a fundamental human
right and establishing robust privacy protection mechanisms
in the era of arti�cial intelligence [3,4]. �e latest update of the
National Arti�cial Intelligence R&D Strategic Plan by the
White House in 2023 underscores the signi�cance of FL in
addressing data privacy and security concerns. 1�is plan
elaborates on long-term investment strategies in responsible
AI research, emphasizing the need for advancements in
privacy-preserving data sharing and the ongoing challenges
within FL. �e General Data Protection Regulation (GDPR)2
in Europe also emphasizes data minimization, privacy by
design, and the principle of processing data close to its source.
Since FL does not require data to leave its source, it simpli�es
compliance with laws that restrict cross-border data transfers,
making it an attractive option for multinational corporations.
In FL only essential model-related information is transmitted.
�erefore, FL can signi�cantly reduce the costs associated

with data transmission. In addition, by processing data locally
and not requiring a central repository for vast amounts of raw
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning,
we re�ne our models’ accuracy, utilizing FL to distribute the
computational load and enhance data privacy. �e results
section provides an in-depth analysis of the models’
performance. Federated learning allows for the development of
highly tailored models that learn from diverse data sources
without compromising sensitive information. �is capability
can drive innovation in PM technologies. Di�erent entities,
even competitors, can collaborate to improve predictive models
without sharing sensitive data, accelerating industry-wide
advancements in maintenance strategies. Managing FL across
many devices and locations introduces complexity, especially
when coordinating updates and maintaining consistent model
performance across diverse environments. Implementing an FL
system requires sophisticated infrastructure and a shi� in
traditional data management strategies, which might be
challenging for some organizations. �is study encompasses a
process validation section, where we underscore our
collaboration with industry experts to ensure that our research
objectives align with practical applications and that our �ndings
remain relevant. �e use of privacy-preserving ML and FL in
PM strengthens data security and enhances operational
e�ciencies and compliance with regulatory norms. �ese
technologies are setting new standards for how industries
approach maintenance tasks while safeguarding critical data. As
adoption grows, they could rede�ne best practices for asset
management across various sectors, promising a future where
PM is both more e�ective and inherently secure. In summary,
this study delves into the application of federated learning for
PM, presenting a structured approach to model development
employing LSTM networks. Our �ndings aim to contribute to
the ongoing discussion on the potential of FL in industrial
applications, particularly in enhancing PM strategies to achieve
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies:
reactive and proactive. Both are widely used due to their
di�erent advantages and disadvantages. Reactive maintenance
describes the process of waiting for the life cycle of a part of an
airplane subsystem to completely run out before repairing or
replacing the faulty components [5]. Proactive maintenance
describes the process of scheduling regular maintenance to
repair/replace components before they become faulty [6]. �e
advantage of reactive maintenance is that we can get 100% usage
out of our parts, but the obvious disadvantage is that there is a
high chance of component failure happening during �ights.
�is can work for something non-critical like overhead cockpit
lights, which would not force a �ight to be grounded if they
failed in �ight. On the other hand, something like a
High-Pressure Compressor (HPC) failure in �ight could prove
disastrous. In these scenarios, it is better to perform proactive
maintenance, where the disadvantage is that we lose some usage
from our components, but we limit the number of in-�ight
failures. In more recent years, with the advancements of ML,
PM has become more popular as a third approach where we can

use machine learning to schedule our maintenance for high-risk
systems and still get close to 100% usage with a low-error model
[7,8]. �ere are two main problems with this approach: small
�eets with small sample sizes to train their PM models and large
�eets unwilling to share their plentiful data with competitors
due to privacy concerns. �e work done in this study applies to
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE)
researchers conducted engine degradation simulations using
the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and
readily accessible on the NASA website, which can serve as a
valuable resource for studying and analyzing engine
degradation behaviors in various operational scenarios. �e
data was converted to .csv and is stored on our GitHub
repository.

 �e C-MAPSS dataset is an operational behavior dataset
from di�erent engines. It o�ers a detailed look into the normal
operational conditions of engines, including the presence of
noise. Each data entry in the dataset contains 26 columns,
encompassing information such as unit number, time cycles,
three operational settings, and 21 sensor measurements (see
Appendix A for details). �ese data snapshots, taken during
individual operational cycles, provide valuable insights into the
engine’s behavior. Table 1 provides detailed information about
each node. Sensor measurements are observed to be
contaminated with noise, which can potentially introduce
inaccuracies and inconsistencies in the data analysis process
[10].

 �e dataset is structured into four training and four testing
datasets, each with varying numbers of trajectories, conditions,
and fault modes. �e training sets are designed to showcase
examples of faults that grow in magnitude until system failure
occurs, providing valuable learning opportunities for predictive
maintenance and fault detection. �e testing sets may end
before system failure, allowing for the evaluation of predictive
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify
correlations between variables in a dataset, making them
particularly useful for analyzing relationships among sensor
measurements [11]. By plotting a heat map of the correlation
matrix, patterns of correlation (both positive and negative)
between pairs of variables can be easily visualized through color
gradients. In the plot below, the lightest (white/tan) and darkest
(black) colors indicate the highest linear correlation among

variables. �e orange/red color indicates there is little to no
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the
strongest relationships consisting of SM2, SM3, SM4, SM7,
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are
correlated with almost all sensor measurement except SM6,
SM9, and SM14. Regarding the trend, it seems like RUL has a
similar correlation trend with SM7, SM12, SM20, and SM21,
which can imply that RUL is mainly determined by SM7, SM12,
SM20, and SM21. �e other interesting part is that OS1 and OS2
do not have any relationship with the sensor measurements. In
FD002, the RUL has no relationship with any of the sensor
measurements. SM15 has the strongest relationship with every
other sensor measurement, but it seems like it has the opposite
trend compared to others. Every operational setting and sensor
measurements are correlated with each other except for the
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and
OS2 are a�ected by most of the sensor measurements. In
FD003, the heatmaps show similar trends and relationships
among the operational setting and sensor measurements as in
FD001. For FD004, the heatmaps show similar trends and
relationships among the operational setting and sensor
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor
measurements from column variables 6 to 26, with unclear
descriptions. �e operational settings are Mach Number (0 to
0.90), altitude (sea level to 40,000 feet), and sea-level
temperature (-60°F to 103°F). Upon further research, the labels
were identi�ed for the sensor measurements with an
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist
of all data up until each failure, and testing sets have the cut-o�
of some data before the failure. For example, in the training set
for FD001, all rows with unit = 1 are the data from the �rst

failure. �e last row of unit 1 has cycles = 192, which means the
engine failed a�er 192 operational cycles. For the testing set, the
last row of unit = 1 has cycle = 31, which is not when the failure
happened. �e separate RUL �les contain the number of cycles
until failure from the last sample for each test unit. In the case of
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data
privacy and security. It is particularly bene�cial in scenarios
where data con�dentiality is crucial in a highly sensitive
environment. �is approach was chosen because it helps
prevent data leakage and reverse engineering of the data.
However, the setup can lead to biased subsets of data at each
node, as the training data is not shareable. To address this, a
federated learning algorithm is employed. Initially, the server
sends instructions to each node to train a local model. �ese
local node models train on their respective data, and a�er a
training round, they only transmit their updated weights to the
central server. �e central server then aggregates these weights.

 �ere are several aggregation methods available in
Federated Learning (FL), each designed to address speci�c

challenges and requirements, such as Federated
Average (Fed Avg), FedProx, and personalized FL,
etc. FedAvg is one of the most widely used methods,
functioning as a generalized version of local-SGD,
which performs a weighted average of local model
parameters (weights) a�er a certain number of
optimization steps are performed by each model
[12]. �e weights for the average are determined as
seen �t by the implementation. �e combined
model is then transmitted back to the nodes, which
use the updated model parameters as a starting
point for another round of training [13]. �is
process continues for multiple rounds until the
global model converges. FedProx is a generalization
of FedAvg and is primarily designed to address
challenges associated with Independent and
Identically Distributed (non-IID) data, which
means data distributions vary signi�cantly across
devices. �is method introduces a proximal term to
the local optimization objective, which restricts the

local updates to remain close to the global model. �is
modi�cation improves stability and convergence in
heterogeneous environments, making it particularly e�ective for
applications with diverse data sources [14]. Another method is
Personalized Federated Learning (FL), an alternative aggregation
method that aims to train a model that depends on individual
user preferences or behaviors [15]. Unlike FedAvg and FedProx,
which aim to train a single global model, personalized FL allows
for the creation of customized models for each user or device.
�is is achieved by incorporating user-speci�c parameters or
�ne-tuning the global model locally to better adapt to individual
data distributions. Personalized FL is especially useful in
scenarios where user data exhibits signi�cant variability, such as
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is
FedAvg, where the weight is the number of data samples

available for training at each node. FedAvg is a well-established
theoretical foundation approach and simpler to implement
than the other approaches, which may require a more complex
mechanism for tailoring models to individual users.

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially
the work done in, we decided that the best technique to model
RUL is to use deep learning with LSTM neural network [8].
LSTM is a type of Recurrent Neural Network (RNN) that is
suitable for modeling events that happen in sequence. LSTM
avoids the common vanishing gradient problem by using gates
to store or forget information as needed [16]. �is allows LSTM
to learn long-term dependencies more e�ectively while having
the ability to forget learned relationships that no longer bene�t
the goal of minimizing loss. Each LSTM cell is composed of
three gates implemented as sigmoid functions. Data xt comes
into the cell, and becomes part of gt the candidate cell which
also has previous memory information. �e ft (forget) gate
decides what information should be forgotten; the it (input)
gate decides what information should be stored, and the ot (output) gate decides what information should be the output
from the cell. Hidden state St-1 and cell state Lt-1 contain the
short and long-term memory states from the previous cells
respectively. Figure 2 demonstrates the internal workings of a
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning
of our neural networks. �is module allows nearly limitless
customization of model tuning with skilled use of Python. See
the documentation of the Keras Tuner Python module for more
information on the usage. Table 2 below shows the exact
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine
learning, there are three main loss functions: Mean Squared
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2).
Let N be the number of prediction samples, ȳ be the mean of the
true values, yi and ŷⁱ be the true and predicted values at sample
i, respectively. �ese metrics are de�ned as:

 (1)

 (2)

 (3)

 MSE is a very punishing loss because it is non-linear with
respect to error size. For example, an error of 10 is 100 times
worse than an error of 1 because of the squaring. Additionally,
the use of the square changes the units of the error to squared
target units which may be di�cult to understand. Because of
this, Root-MSE is a popular choice: RMSE=√MSE. can be good
because it is recorded in the same units as the target variable
(engine cycles in our case); however, it is linearly punishing and
treats an error of qβ as being q times worse than an error of β
which may not be good in certain cases such as jet engine
failure. R2 is generally not chosen as a loss as it is di�cult to
understand it as a loss function and easy to manipulate by
adding more variables to our input and “curating” the validation
data to have low variance. However, given two models with the
same input variables evaluated on the same data, R2 can be a
good “tie-breaker” for similar RMSE or MAE. For the reasons
laid out above, we selected to use RMSE for the training and
validation loss of our models, but we reported MAE as our
second metric.

Model architecture
Derived from the work done in, we used a neural network
architecture in Figure 3 that leverages the recurrent capabilities
and robustness of LSTM cells with the approximation abilities
of fully connected layers [8]. �e dropout layers and recurrent
dropout in the LSTM are used to prevent over-�tting and
improve generalization on unseen data. �e Gaussian noise
layers are also generalization-aiding layers, as well as the
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal
performance in machine learning models, and it involves three
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset
have noise included. �e noise was purposefully added when
the data was being generated [9]. Noise can be bad for machine
learning models since the models may over-�t the noise of the
training data, which has no real in�uence on the underlying
phenomena. Filtering is a way to reduce the noise in the signals
and improve the model generalization. We chose to use a
median �lter, which is a sliding window �lter that suppresses
noise and outliers, as illustrated in Figure 4 for Engine 11 of
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided
the signals based on each unit within each node. �en we tried
kernel sizes k=3,5,7,9,11,…, Mk where Mk = , si being the
number of samples for unit i. �e best kernel for each unit was
selected as the one that maximizes the linear correlation
between the target (RUL) and the signal being analyzed. We
then took the weighted geometric average of all the kernels and
set it as the �nal kernel size to use. �e weight varied as the
correlation and the number of samples for the unit. �e best was
selected depending on the �nal model performance.

�e second technique used is a simple “pruning” technique,
which randomly removes some samples from the ends of the
sequences of some of the time series in the training set. �is
method is similar in execution to neural network pruning,
though the goal is to make the data more representative as
opposed to reducing complexity [19,20]. �is was done to
mimic the test set time series, which did not run until failure.
�e general idea was to prevent the model from over-�tting to a
time series that starts at full health and ends at critical failure.
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in
vastly di�erent scales, such as data taken from di�erent sensors
from di�erent jet engines in di�erent operating conditions [21].
�e di�ering scales and variances can cause the neural network
to unfairly bias certain dimensions in the data due to
undesirable reasons. We elected to use the popular z-score
normalization technique, which takes all dimensions in the data
and normalizes them to have approximately zero mean and

standard deviation of 1. �is creates an even playing �eld when
it comes to assigning neural network parameters during
optimization. To use this technique, we simply turn each
observation in each sample into a z-score. Let X be the set of all
observations for a certain feature in one of our agents, we can
�nd the z-score for the ith observation xi using:

 from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that
deal with the degradation of parts, we decided to use some
feature engineering techniques to add dimensions and new
predictors to our data. �e �rst technique is a simple
accumulation technique where we take the cumulative sum of
certain signals throughout the degradation process. �e second
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input
space can add helpful dimensions to our dataset [22]. We took a
similar approach by taking a simple, single-dimension,
single-time-step signed change calculation to some of our
features and added these as new features. �e single time step is
because we do not know how long the “cycle” time dimension is.
Given that most engines in the dataset fail within 200 cycles, it
is safe to say each cycle is a relatively large time step, such as
hours or even an entire �ight. �us, having too large of a
window may not capture meaningful change. �e following
snippet of code in Listing 2 demonstrates how the rate of change
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3
outline the optimal con�guration for the Long
Short-Term Memory (LSTM) network used in
predicting the Remaining Useful Life (RUL) of jet
engines within a federated learning framework. �e
model employs 4 LSTM layers and 4 dense layers,
each with 64 units per layer, which balances model
complexity and computational e�ciency. A batch
size 32 was selected, enabling e�cient training
while maintaining su�cient gradient updates. To
prevent over�tting, a dropout rate of 0.1 and a
recurrent dropout rate of 0.2 were applied, ensuring
robust generalization to unseen data. �e learning
rate was set to 0.001, a standard choice for achieving
stable convergence during training. Additionally,
Gaussian noise with a variance of 0.01 was
introduced to improve the model's generalization
by simulating slight variations in the input data.
�ese hyperparameters were �ne-tuned through
extensive experimentation using KerasTuner,
ensuring optimal performance for the predictive
maintenance task while preserving data privacy in a
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several
studies aggregated by Asif et al. and compared the results with
our federated averaged model results [1]. We used statistical
tests to compare these models. First, we ran two-tailed, equal
means tests for all of them without selecting an α value
beforehand. All the p-values were extremely low. �us, all of the
equal means hypotheses were rejected, suggesting that our
models either outperformed or underperformed against each
study.

 We then performed greater-than-or-equal-to and
less-than-or-equal-to one-tailed tests against each of the studies
and recorded the results. Table 5 below summarizes the studies
for which our model was statistically better on average. �e
study number refers to the order in which the study appears in
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set
performance for our agents and our aggregated model. We also

have graphical demonstrations in Figure 5 of how our model
predicts the degradation of the di�erent faults over time,
considering the di�erent conditions simulated within the
di�erent agents.

Study Null Hypothesis (H0) t statistics Reject H0?

13 µ ≤ 18.44 -14.35 No

3 µ ≤ 18.86 -23.70 No

5 µ ≤ 19.24 -32.37 No

10 µ ≤ 19.29 -33.39 No

2 µ ≤ 21.24 -77.50 No

Table 5. Statistical Model Comparison

Table 6. Con�dence Intervals for Mean Model Errors

Note: all p-values 0.99999999 or higher.

We also generated 95% con�dence intervals for the true mean
error of our agent and aggregated models in Table 6.

Agent Name Lower Bound Upper Bound
FD001 13.10 13.44

FD002 20.55 21.16

FD003 13.82 13.98

FD004 22.90 23.48

Aggregated 17.71 17.90

Discussion
�e experiment results validated our hypothesis, as, on average,
the FL approach either maintained or improved the model
performance. While the test error across the individual agents
showed signi�cant variance, the aggregated model
demonstrated the ability to generalize and balance the error
overall. �e variance in individual agent performance can be
explained by the operating conditions detailed in Table 1.
FD002 and FD004 are simulated with variance in six operating
conditions (altitude, pressure, air speed, etc.), while FD001 and
FD003 are simulated at sea level with no variance. �us, FD002
and FD004 performed 1.25-1.6 times worse than the other
agents. �e statistical analysis provided further insights into the
e�ectiveness of the FL model. By conducting two-tailed equal
means tests and greater-than-or-equal-to and less-than-or-
equal-to one-tailed tests, we were able to compare our model’s
performance against other studies. �e consistently low
p-values and the rejection of null hypotheses in several cases
suggest that our FL-based model either outperforms or is
comparable to existing methods in predictive maintenance. �is
statistical rigor con�rms that the federated approach not only
preserves data privacy but also maintains, if not improves,
model accuracy.

Conclusions
�is study explores the application of FL in PM tasks, focusing
on engine fault prediction using deep learning with LSTM cells.
�e primary motivation behind this work was to address the
challenges of maintaining data privacy while allowing
collaboration between entities with data silos. Our main
hypothesis was that implementing the FL framework would
either maintain or improve the model performance on average
when compared to the centralized learning approach. �e
implementation of FL o�ers several key advantages in the

context of predictive maintenance. Firstly, it preserves data
privacy by ensuring that sensitive data remains localized on the
devices where it is generated. �is is particularly important in
industries like aerospace, where operational data can include
proprietary and sensitive information. By minimizing the need
for data centralization, FL reduces the risk of data breaches
while allowing collaboration between entities that would
otherwise not be able to collaborate. However, the study also
highlights some challenges associated with the implementation
of FL in predictive maintenance. Managing the FL process
across multiple devices introduces complexity, particularly in
coordinating updates and maintaining consistent model
performance across diverse environments. Additionally, the
federated approach can lead to biased subsets of data at each
node, which may a�ect the generalization of the global model.
Despite these challenges, the ability to collaborate across
di�erent entities without sharing raw data opens new
possibilities for improving the maintenance models
industry-wide. �is collaborative approach can accelerate
advancements in predictive maintenance technologies,
bene�ting not just individual companies but the entire industry.

Declarations
�is project has no external funding, and all authors consent to
its publication. �e data was acquired from NASA PCoE under
a Public Domain License, and the code is available upon request.

References
1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA.

Communication-e�cient learning of deep networks from
decentralized data. InArti�cial intelligence and statistics; 2017.
1273-1282p. https://doi.org/10.48550/arXiv.1602.05629

2. Diamoutene A, Kamsu-Foguem B, Noureddine F, Barro D.
Prediction of US General Aviation fatalities from extreme value
approach. Transp Res A: Policy Pract. 2018;109:65-75. .
https://doi.org/10.1016/j.tra.2018.01.022

3. Yin X, Zhu Y, Hu J. A comprehensive survey of privacy-preserving
federated learning: A taxonomy, review, and future directions. ACM
Comput Surv. 2021;54(6):1-36. https://doi.org/10.1145/3460427

4. Tene O, Polonetsky J. Privacy in the age of big data: a time for big
decisions. Stan. L. Rev. Online. 2011;64:63.

5. Stanton I, Munir K, Ikram A, El‐Bakry M. Predictive maintenance
analytics and implementation for aircra�: Challenges and opportunities.
Syst Eng. 2023;26(2):216-237. https://doi.org/10.1002/sys.21651

6. Meissner R, Rahn A, Wicke K. Developing prescriptive
maintenance strategies in the aviation industry based on a
discrete-event simulation framework for post-prognostics decision
making. Reliab Eng Syst Saf. 2021;214:107812. .
https://doi.org/10.1016/j.ress.2021.107812

7. Jiang Y, Tran TH, Williams L. Machine learning and mixed reality for
smart aviation: Applications and challenges. J Air Transp Manage.
2023;111:102437. https://doi.org/10.1016/j.jairtraman.2023.102437

8. Asif O, Haider SA, Naqvi SR, Zaki JF, Kwak KS, Islam SR. A deep
learning model for remaining useful life prediction of aircra�
turbofan engine on C-MAPSS dataset. Ieee Access. 2022;10:95425-
95440. https://doi.org/10.1109/ACCESS.2022.3203406

9. Saxena A, Goebel K, Simon D, Eklund N. Damage propagation
modeling for aircra� engine run-to-failure simulation. In2008
international conference on prognostics and health management;
2008. 1-9p.

10. Botre M, Brentner KS, Horn JF, Wachspress D. Validation of
helicopter noise prediction system with �ight data. InVertical Flight
Society 75th Annual Forum & Technology Display; 2019.
https://doi.org/10.4050/F-0075-2019-14447

11. Ebrahimi A, Jafari S, Nikolaidis T. Heat load development and heat
map sensitivity analysis for civil aero-engines. Int J Turbomach
Propuls Power. 2024;9(3):25. https://doi.org/10.3390/ijtpp9030025

12. Wang J, Charles Z, Xu Z, Joshi G, McMahan HB, Al-Shedivat M, et
al. A �eld guide to federated optimization. arXiv preprint
arXiv:2107.06917. 2021. https://doi.org/10.48550/arXiv.2107.06917

13. Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G, Piccialli F. Model
aggregation techniques in federated learning: A comprehensive
survey. Future Gener Comput Syst. 2024;150:272-293. .
https://doi.org/10.1016/j.future.2023.09.008

14. Mu X, Shen Y, Cheng K, Geng X, Fu J, Zhang T, et al. Fedproc: Prototypical
contrastive federated learning on non-iid data. Future Gener Comput
Syst. 2023;143:93-104. https://doi.org/10.1016/j.future.2023.01.019

15. T Dinh C, Tran N, Nguyen J. Personalized federated learning with
moreau envelopes. Adv Neural Inf Process Syst. 2020;33:21394-1405.

16. Noh SH. Analysis of gradient vanishing of RNNs and performance
comparison. Information. 2021;12(11):442. .
https://doi.org/10.3390/info12110442

17. Kaur H, Virmani J, �akur S. A genetic algorithm-based
metaheuristic approach to customize a computer-aided classi�cation

system for enhanced screen �lm mammograms. InU-Healthcare
Monitoring Systems; 2019. 217-259p. .
https://doi.org/10.1016/B978-0-12-815370-3.00010-4

18. Kumar A, Sodhi SS. Comparative analysis of gaussian �lter, median
�lters and denoise autoenocoder. In2020 7th international conference
on computing for sustainable global development (INDIACom); 2020.
45-51p. https://doi.org/10.23919/INDIACom49435.2020.9083712

19. Li L, Zhu J, Sun MT. Deep learning based method for pruning deep
neural networks. In2019 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW); 2019. 312-317p.
https://doi.org/10.1109/ICMEW.2019.00-68

20. Pasandi MM, Hajabdollahi M, Karimi N, Samavi S. Modeling of pruning
techniques for deep neural networks simpli�cation. arXiv preprint
arXiv:2001.04062. 2020. https://doi.org/10.48550/arXiv.2001.04062

21. Sharma V. A study on data scaling methods for machine learning. Int J
Glob Acad Sci Res. 2022;1(1):31-42. https://doi.org/10.55938/ijgasr.v1i1.4

22. Mu X, Pavel AB, Kon M. Di�erentiation and integration of machine
learning feature vectors. In2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA);2016. 611-616p.

J. Mach. Learn. Appl., 2025, 1, 17-24 © Reseapro Journals 2025
https://doi.org/10.61577/jmla.2025.100005

JOURNAL OF MACHINE LEARNING AND APPLICATIONS
2025, VOL. 1, ISSUE 1

23

Integrating privacy-preserving machine learning (ML)
techniques—particularly Federated Learning (FL)—into
Predictive Maintenance (PM), represents a signi�cant shi� in
how industrial operations manage maintenance and data
security. �is approach has broad implications for operational
e�ciency, data privacy, regulatory compliance, and
technological innovation. In FL, data are processed locally at the
device or server level, drastically reducing the risk of exposing
sensitive information during transmission or in a centralized
database [1]. �is is crucial for industries where operational
data may include proprietary or sensitive business information.
By minimizing data centralization, federated learning decreases
the vulnerability of systems to massive data breaches, a growing
concern with the increasing incidences of cyber-attacks. �is
work investigates the application of FL to PM tasks, focusing on
the utilization of Long Short-Term Memory (LSTM) networks
for predicting engine faults. Our research is motivated by the
increasing demand for e�cient PM methodologies that can
minimize downtime and reduce operational costs in various
industries [2]. Privacy-preserving ML enables real-time data
analysis directly on the machines where data is generated. �is
allows for immediate identi�cation of potential issues,
facilitating quicker responses to prevent failures. With the

ability to analyze data across a network of devices without
compromising privacy, organizations can optimize
maintenance schedules based on predictive insights, rather
than reactive or scheduled maintenance strategies. �is not
only extends the life of equipment but also reduces
unnecessary downtime. FL aligns with global data protection
regulations towards treating privacy as a fundamental human
right and establishing robust privacy protection mechanisms
in the era of arti�cial intelligence [3,4]. �e latest update of the
National Arti�cial Intelligence R&D Strategic Plan by the
White House in 2023 underscores the signi�cance of FL in
addressing data privacy and security concerns. 1�is plan
elaborates on long-term investment strategies in responsible
AI research, emphasizing the need for advancements in
privacy-preserving data sharing and the ongoing challenges
within FL. �e General Data Protection Regulation (GDPR)2
in Europe also emphasizes data minimization, privacy by
design, and the principle of processing data close to its source.
Since FL does not require data to leave its source, it simpli�es
compliance with laws that restrict cross-border data transfers,
making it an attractive option for multinational corporations.
In FL only essential model-related information is transmitted.
�erefore, FL can signi�cantly reduce the costs associated

with data transmission. In addition, by processing data locally
and not requiring a central repository for vast amounts of raw
data, companies can save on storage costs.

 �rough iterative experimentation and parameter tuning,
we re�ne our models’ accuracy, utilizing FL to distribute the
computational load and enhance data privacy. �e results
section provides an in-depth analysis of the models’
performance. Federated learning allows for the development of
highly tailored models that learn from diverse data sources
without compromising sensitive information. �is capability
can drive innovation in PM technologies. Di�erent entities,
even competitors, can collaborate to improve predictive models
without sharing sensitive data, accelerating industry-wide
advancements in maintenance strategies. Managing FL across
many devices and locations introduces complexity, especially
when coordinating updates and maintaining consistent model
performance across diverse environments. Implementing an FL
system requires sophisticated infrastructure and a shi� in
traditional data management strategies, which might be
challenging for some organizations. �is study encompasses a
process validation section, where we underscore our
collaboration with industry experts to ensure that our research
objectives align with practical applications and that our �ndings
remain relevant. �e use of privacy-preserving ML and FL in
PM strengthens data security and enhances operational
e�ciencies and compliance with regulatory norms. �ese
technologies are setting new standards for how industries
approach maintenance tasks while safeguarding critical data. As
adoption grows, they could rede�ne best practices for asset
management across various sectors, promising a future where
PM is both more e�ective and inherently secure. In summary,
this study delves into the application of federated learning for
PM, presenting a structured approach to model development
employing LSTM networks. Our �ndings aim to contribute to
the ongoing discussion on the potential of FL in industrial
applications, particularly in enhancing PM strategies to achieve
operational e�ciency and reliability.

Definition and Background of the Problem
Aircra� maintenance historically has two main philosophies:
reactive and proactive. Both are widely used due to their
di�erent advantages and disadvantages. Reactive maintenance
describes the process of waiting for the life cycle of a part of an
airplane subsystem to completely run out before repairing or
replacing the faulty components [5]. Proactive maintenance
describes the process of scheduling regular maintenance to
repair/replace components before they become faulty [6]. �e
advantage of reactive maintenance is that we can get 100% usage
out of our parts, but the obvious disadvantage is that there is a
high chance of component failure happening during �ights.
�is can work for something non-critical like overhead cockpit
lights, which would not force a �ight to be grounded if they
failed in �ight. On the other hand, something like a
High-Pressure Compressor (HPC) failure in �ight could prove
disastrous. In these scenarios, it is better to perform proactive
maintenance, where the disadvantage is that we lose some usage
from our components, but we limit the number of in-�ight
failures. In more recent years, with the advancements of ML,
PM has become more popular as a third approach where we can

use machine learning to schedule our maintenance for high-risk
systems and still get close to 100% usage with a low-error model
[7,8]. �ere are two main problems with this approach: small
�eets with small sample sizes to train their PM models and large
�eets unwilling to share their plentiful data with competitors
due to privacy concerns. �e work done in this study applies to
FL to address both problems with a single solution.

Data
NASA Ames Prognostics Center of Excellence (PCoE)
researchers conducted engine degradation simulations using
the Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) [9]. �e C-MAPSS dataset is publicly available and
readily accessible on the NASA website, which can serve as a
valuable resource for studying and analyzing engine
degradation behaviors in various operational scenarios. �e
data was converted to .csv and is stored on our GitHub
repository.

 �e C-MAPSS dataset is an operational behavior dataset
from di�erent engines. It o�ers a detailed look into the normal
operational conditions of engines, including the presence of
noise. Each data entry in the dataset contains 26 columns,
encompassing information such as unit number, time cycles,
three operational settings, and 21 sensor measurements (see
Appendix A for details). �ese data snapshots, taken during
individual operational cycles, provide valuable insights into the
engine’s behavior. Table 1 provides detailed information about
each node. Sensor measurements are observed to be
contaminated with noise, which can potentially introduce
inaccuracies and inconsistencies in the data analysis process
[10].

 �e dataset is structured into four training and four testing
datasets, each with varying numbers of trajectories, conditions,
and fault modes. �e training sets are designed to showcase
examples of faults that grow in magnitude until system failure
occurs, providing valuable learning opportunities for predictive
maintenance and fault detection. �e testing sets may end
before system failure, allowing for the evaluation of predictive
models under di�erent scenarios.

Heatmaps
Heatmaps are powerful visualization tools used to identify
correlations between variables in a dataset, making them
particularly useful for analyzing relationships among sensor
measurements [11]. By plotting a heat map of the correlation
matrix, patterns of correlation (both positive and negative)
between pairs of variables can be easily visualized through color
gradients. In the plot below, the lightest (white/tan) and darkest
(black) colors indicate the highest linear correlation among

variables. �e orange/red color indicates there is little to no
linear correlation between the variables.

 According to Figure 1 of FD001, the heat-map shows the
strongest relationships consisting of SM2, SM3, SM4, SM7,
SM8, SM11, SM12, SM13, SM15, SM17, SM20, SM21 are
correlated with almost all sensor measurement except SM6,
SM9, and SM14. Regarding the trend, it seems like RUL has a
similar correlation trend with SM7, SM12, SM20, and SM21,
which can imply that RUL is mainly determined by SM7, SM12,
SM20, and SM21. �e other interesting part is that OS1 and OS2
do not have any relationship with the sensor measurements. In
FD002, the RUL has no relationship with any of the sensor
measurements. SM15 has the strongest relationship with every
other sensor measurement, but it seems like it has the opposite
trend compared to others. Every operational setting and sensor
measurements are correlated with each other except for the
SM13 and SM14. Unlike FD001, FD002 shows that OS1 and
OS2 are a�ected by most of the sensor measurements. In
FD003, the heatmaps show similar trends and relationships
among the operational setting and sensor measurements as in
FD001. For FD004, the heatmaps show similar trends and
relationships among the operational setting and sensor
measurements as FD002.

Data preparation
�e original data contains three operational settings and sensor
measurements from column variables 6 to 26, with unclear
descriptions. �e operational settings are Mach Number (0 to
0.90), altitude (sea level to 40,000 feet), and sea-level
temperature (-60°F to 103°F). Upon further research, the labels
were identi�ed for the sensor measurements with an
explanation of each label provided in Appendix A [9].

 From the original C-MAPSS datasets, training sets consist
of all data up until each failure, and testing sets have the cut-o�
of some data before the failure. For example, in the training set
for FD001, all rows with unit = 1 are the data from the �rst

failure. �e last row of unit 1 has cycles = 192, which means the
engine failed a�er 192 operational cycles. For the testing set, the
last row of unit = 1 has cycle = 31, which is not when the failure
happened. �e separate RUL �les contain the number of cycles
until failure from the last sample for each test unit. In the case of
the test set for FD001 unit 1, it is cycles = 112.

Methodology
Federated learning and FedAvg aggregation
Distributed learning that places a strong emphasis on data
privacy and security. It is particularly bene�cial in scenarios
where data con�dentiality is crucial in a highly sensitive
environment. �is approach was chosen because it helps
prevent data leakage and reverse engineering of the data.
However, the setup can lead to biased subsets of data at each
node, as the training data is not shareable. To address this, a
federated learning algorithm is employed. Initially, the server
sends instructions to each node to train a local model. �ese
local node models train on their respective data, and a�er a
training round, they only transmit their updated weights to the
central server. �e central server then aggregates these weights.

 �ere are several aggregation methods available in
Federated Learning (FL), each designed to address speci�c

challenges and requirements, such as Federated
Average (Fed Avg), FedProx, and personalized FL,
etc. FedAvg is one of the most widely used methods,
functioning as a generalized version of local-SGD,
which performs a weighted average of local model
parameters (weights) a�er a certain number of
optimization steps are performed by each model
[12]. �e weights for the average are determined as
seen �t by the implementation. �e combined
model is then transmitted back to the nodes, which
use the updated model parameters as a starting
point for another round of training [13]. �is
process continues for multiple rounds until the
global model converges. FedProx is a generalization
of FedAvg and is primarily designed to address
challenges associated with Independent and
Identically Distributed (non-IID) data, which
means data distributions vary signi�cantly across
devices. �is method introduces a proximal term to
the local optimization objective, which restricts the

local updates to remain close to the global model. �is
modi�cation improves stability and convergence in
heterogeneous environments, making it particularly e�ective for
applications with diverse data sources [14]. Another method is
Personalized Federated Learning (FL), an alternative aggregation
method that aims to train a model that depends on individual
user preferences or behaviors [15]. Unlike FedAvg and FedProx,
which aim to train a single global model, personalized FL allows
for the creation of customized models for each user or device.
�is is achieved by incorporating user-speci�c parameters or
�ne-tuning the global model locally to better adapt to individual
data distributions. Personalized FL is especially useful in
scenarios where user data exhibits signi�cant variability, such as
in healthcare or recommendation systems.

 In our case, we chose to start with a simple method that is
FedAvg, where the weight is the number of data samples

available for training at each node. FedAvg is a well-established
theoretical foundation approach and simpler to implement
than the other approaches, which may require a more complex
mechanism for tailoring models to individual users.

Long short-term memory (lstm)
Upon reviewing the current work being done for PM, especially
the work done in, we decided that the best technique to model
RUL is to use deep learning with LSTM neural network [8].
LSTM is a type of Recurrent Neural Network (RNN) that is
suitable for modeling events that happen in sequence. LSTM
avoids the common vanishing gradient problem by using gates
to store or forget information as needed [16]. �is allows LSTM
to learn long-term dependencies more e�ectively while having
the ability to forget learned relationships that no longer bene�t
the goal of minimizing loss. Each LSTM cell is composed of
three gates implemented as sigmoid functions. Data xt comes
into the cell, and becomes part of gt the candidate cell which
also has previous memory information. �e ft (forget) gate
decides what information should be forgotten; the it (input)
gate decides what information should be stored, and the ot (output) gate decides what information should be the output
from the cell. Hidden state St-1 and cell state Lt-1 contain the
short and long-term memory states from the previous cells
respectively. Figure 2 demonstrates the internal workings of a
single LSTM cell.

Model validation
We used the Keras Tuner python module to do extensive tuning
of our neural networks. �is module allows nearly limitless
customization of model tuning with skilled use of Python. See
the documentation of the Keras Tuner Python module for more
information on the usage. Table 2 below shows the exact
hyper-parameters and values tested.

Metrics and loss
When it comes to metrics for regression problems in machine
learning, there are three main loss functions: Mean Squared
Error (MSE), Mean Absolute Error (MAE) and R-squared (R2).
Let N be the number of prediction samples, ȳ be the mean of the
true values, yi and ŷⁱ be the true and predicted values at sample
i, respectively. �ese metrics are de�ned as:

 (1)

 (2)

 (3)

 MSE is a very punishing loss because it is non-linear with
respect to error size. For example, an error of 10 is 100 times
worse than an error of 1 because of the squaring. Additionally,
the use of the square changes the units of the error to squared
target units which may be di�cult to understand. Because of
this, Root-MSE is a popular choice: RMSE=√MSE. can be good
because it is recorded in the same units as the target variable
(engine cycles in our case); however, it is linearly punishing and
treats an error of qβ as being q times worse than an error of β
which may not be good in certain cases such as jet engine
failure. R2 is generally not chosen as a loss as it is di�cult to
understand it as a loss function and easy to manipulate by
adding more variables to our input and “curating” the validation
data to have low variance. However, given two models with the
same input variables evaluated on the same data, R2 can be a
good “tie-breaker” for similar RMSE or MAE. For the reasons
laid out above, we selected to use RMSE for the training and
validation loss of our models, but we reported MAE as our
second metric.

Model architecture
Derived from the work done in, we used a neural network
architecture in Figure 3 that leverages the recurrent capabilities
and robustness of LSTM cells with the approximation abilities
of fully connected layers [8]. �e dropout layers and recurrent
dropout in the LSTM are used to prevent over-�tting and
improve generalization on unseen data. �e Gaussian noise
layers are also generalization-aiding layers, as well as the
di�erential privacy facet of Federated Learning.

Preprocessing
Preprocessing data e�ectively is crucial for ensuring optimal
performance in machine learning models, and it involves three
key techniques: �ltering, pruning units, and scaling.

 Many of the signals that make up the input of this dataset
have noise included. �e noise was purposefully added when
the data was being generated [9]. Noise can be bad for machine
learning models since the models may over-�t the noise of the
training data, which has no real in�uence on the underlying
phenomena. Filtering is a way to reduce the noise in the signals
and improve the model generalization. We chose to use a
median �lter, which is a sliding window �lter that suppresses
noise and outliers, as illustrated in Figure 4 for Engine 11 of
FD002 [17,18].

 To select the kernel size for �ltering each signal, we divided
the signals based on each unit within each node. �en we tried
kernel sizes k=3,5,7,9,11,…, Mk where Mk = , si being the
number of samples for unit i. �e best kernel for each unit was
selected as the one that maximizes the linear correlation
between the target (RUL) and the signal being analyzed. We
then took the weighted geometric average of all the kernels and
set it as the �nal kernel size to use. �e weight varied as the
correlation and the number of samples for the unit. �e best was
selected depending on the �nal model performance.

�e second technique used is a simple “pruning” technique,
which randomly removes some samples from the ends of the
sequences of some of the time series in the training set. �is
method is similar in execution to neural network pruning,
though the goal is to make the data more representative as
opposed to reducing complexity [19,20]. �is was done to
mimic the test set time series, which did not run until failure.
�e general idea was to prevent the model from over-�tting to a
time series that starts at full health and ends at critical failure.
Listing 1 is the code that was used for pruning.

 Scaling inputs are important when dealing with data in
vastly di�erent scales, such as data taken from di�erent sensors
from di�erent jet engines in di�erent operating conditions [21].
�e di�ering scales and variances can cause the neural network
to unfairly bias certain dimensions in the data due to
undesirable reasons. We elected to use the popular z-score
normalization technique, which takes all dimensions in the data
and normalizes them to have approximately zero mean and

standard deviation of 1. �is creates an even playing �eld when
it comes to assigning neural network parameters during
optimization. To use this technique, we simply turn each
observation in each sample into a z-score. Let X be the set of all
observations for a certain feature in one of our agents, we can
�nd the z-score for the ith observation xi using:

 from noise, outlier, and scale-related biases.

Feature engineering
Given that our dataset is made up of multiple time series that
deal with the degradation of parts, we decided to use some
feature engineering techniques to add dimensions and new
predictors to our data. �e �rst technique is a simple
accumulation technique where we take the cumulative sum of
certain signals throughout the degradation process. �e second
technique is explained as follows.

 As proposed by Mu et al., taking the derivative of the input
space can add helpful dimensions to our dataset [22]. We took a
similar approach by taking a simple, single-dimension,
single-time-step signed change calculation to some of our
features and added these as new features. �e single time step is
because we do not know how long the “cycle” time dimension is.
Given that most engines in the dataset fail within 200 cycles, it
is safe to say each cycle is a relatively large time step, such as
hours or even an entire �ight. �us, having too large of a
window may not capture meaningful change. �e following
snippet of code in Listing 2 demonstrates how the rate of change
is calculated for one dimension and time-step = dt:

Results and Discussion
Model hyperparameters
�e hyperparameter tuning results in Table 3
outline the optimal con�guration for the Long
Short-Term Memory (LSTM) network used in
predicting the Remaining Useful Life (RUL) of jet
engines within a federated learning framework. �e
model employs 4 LSTM layers and 4 dense layers,
each with 64 units per layer, which balances model
complexity and computational e�ciency. A batch
size 32 was selected, enabling e�cient training
while maintaining su�cient gradient updates. To
prevent over�tting, a dropout rate of 0.1 and a
recurrent dropout rate of 0.2 were applied, ensuring
robust generalization to unseen data. �e learning
rate was set to 0.001, a standard choice for achieving
stable convergence during training. Additionally,
Gaussian noise with a variance of 0.01 was
introduced to improve the model's generalization
by simulating slight variations in the input data.
�ese hyperparameters were �ne-tuned through
extensive experimentation using KerasTuner,
ensuring optimal performance for the predictive
maintenance task while preserving data privacy in a
federated learning setup.

Statistical Analysis
We averaged the results across the di�erent agents over several
studies aggregated by Asif et al. and compared the results with
our federated averaged model results [1]. We used statistical
tests to compare these models. First, we ran two-tailed, equal
means tests for all of them without selecting an α value
beforehand. All the p-values were extremely low. �us, all of the
equal means hypotheses were rejected, suggesting that our
models either outperformed or underperformed against each
study.

 We then performed greater-than-or-equal-to and
less-than-or-equal-to one-tailed tests against each of the studies
and recorded the results. Table 5 below summarizes the studies
for which our model was statistically better on average. �e
study number refers to the order in which the study appears in
Table 9 of the paper by Asif et al. [1].

Model performance
Below is Table 4 detailing the validation and testing set
performance for our agents and our aggregated model. We also

have graphical demonstrations in Figure 5 of how our model
predicts the degradation of the di�erent faults over time,
considering the di�erent conditions simulated within the
di�erent agents.

We also generated 95% con�dence intervals for the true mean
error of our agent and aggregated models in Table 6.

Discussion
�e experiment results validated our hypothesis, as, on average,
the FL approach either maintained or improved the model
performance. While the test error across the individual agents
showed signi�cant variance, the aggregated model
demonstrated the ability to generalize and balance the error
overall. �e variance in individual agent performance can be
explained by the operating conditions detailed in Table 1.
FD002 and FD004 are simulated with variance in six operating
conditions (altitude, pressure, air speed, etc.), while FD001 and
FD003 are simulated at sea level with no variance. �us, FD002
and FD004 performed 1.25-1.6 times worse than the other
agents. �e statistical analysis provided further insights into the
e�ectiveness of the FL model. By conducting two-tailed equal
means tests and greater-than-or-equal-to and less-than-or-
equal-to one-tailed tests, we were able to compare our model’s
performance against other studies. �e consistently low
p-values and the rejection of null hypotheses in several cases
suggest that our FL-based model either outperforms or is
comparable to existing methods in predictive maintenance. �is
statistical rigor con�rms that the federated approach not only
preserves data privacy but also maintains, if not improves,
model accuracy.

Conclusions
�is study explores the application of FL in PM tasks, focusing
on engine fault prediction using deep learning with LSTM cells.
�e primary motivation behind this work was to address the
challenges of maintaining data privacy while allowing
collaboration between entities with data silos. Our main
hypothesis was that implementing the FL framework would
either maintain or improve the model performance on average
when compared to the centralized learning approach. �e
implementation of FL o�ers several key advantages in the

context of predictive maintenance. Firstly, it preserves data
privacy by ensuring that sensitive data remains localized on the
devices where it is generated. �is is particularly important in
industries like aerospace, where operational data can include
proprietary and sensitive information. By minimizing the need
for data centralization, FL reduces the risk of data breaches
while allowing collaboration between entities that would
otherwise not be able to collaborate. However, the study also
highlights some challenges associated with the implementation
of FL in predictive maintenance. Managing the FL process
across multiple devices introduces complexity, particularly in
coordinating updates and maintaining consistent model
performance across diverse environments. Additionally, the
federated approach can lead to biased subsets of data at each
node, which may a�ect the generalization of the global model.
Despite these challenges, the ability to collaborate across
di�erent entities without sharing raw data opens new
possibilities for improving the maintenance models
industry-wide. �is collaborative approach can accelerate
advancements in predictive maintenance technologies,
bene�ting not just individual companies but the entire industry.

Declarations
�is project has no external funding, and all authors consent to
its publication. �e data was acquired from NASA PCoE under
a Public Domain License, and the code is available upon request.

References
1. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA.

Communication-e�cient learning of deep networks from
decentralized data. InArti�cial intelligence and statistics; 2017.
1273-1282p. https://doi.org/10.48550/arXiv.1602.05629

2. Diamoutene A, Kamsu-Foguem B, Noureddine F, Barro D.
Prediction of US General Aviation fatalities from extreme value
approach. Transp Res A: Policy Pract. 2018;109:65-75. .
https://doi.org/10.1016/j.tra.2018.01.022

3. Yin X, Zhu Y, Hu J. A comprehensive survey of privacy-preserving
federated learning: A taxonomy, review, and future directions. ACM
Comput Surv. 2021;54(6):1-36. https://doi.org/10.1145/3460427

4. Tene O, Polonetsky J. Privacy in the age of big data: a time for big
decisions. Stan. L. Rev. Online. 2011;64:63.

5. Stanton I, Munir K, Ikram A, El‐Bakry M. Predictive maintenance
analytics and implementation for aircra�: Challenges and opportunities.
Syst Eng. 2023;26(2):216-237. https://doi.org/10.1002/sys.21651

6. Meissner R, Rahn A, Wicke K. Developing prescriptive
maintenance strategies in the aviation industry based on a
discrete-event simulation framework for post-prognostics decision
making. Reliab Eng Syst Saf. 2021;214:107812. .
https://doi.org/10.1016/j.ress.2021.107812

7. Jiang Y, Tran TH, Williams L. Machine learning and mixed reality for
smart aviation: Applications and challenges. J Air Transp Manage.
2023;111:102437. https://doi.org/10.1016/j.jairtraman.2023.102437

8. Asif O, Haider SA, Naqvi SR, Zaki JF, Kwak KS, Islam SR. A deep
learning model for remaining useful life prediction of aircra�
turbofan engine on C-MAPSS dataset. Ieee Access. 2022;10:95425-
95440. https://doi.org/10.1109/ACCESS.2022.3203406

9. Saxena A, Goebel K, Simon D, Eklund N. Damage propagation
modeling for aircra� engine run-to-failure simulation. In2008
international conference on prognostics and health management;
2008. 1-9p.

10. Botre M, Brentner KS, Horn JF, Wachspress D. Validation of
helicopter noise prediction system with �ight data. InVertical Flight
Society 75th Annual Forum & Technology Display; 2019.
https://doi.org/10.4050/F-0075-2019-14447

11. Ebrahimi A, Jafari S, Nikolaidis T. Heat load development and heat
map sensitivity analysis for civil aero-engines. Int J Turbomach
Propuls Power. 2024;9(3):25. https://doi.org/10.3390/ijtpp9030025

12. Wang J, Charles Z, Xu Z, Joshi G, McMahan HB, Al-Shedivat M, et
al. A �eld guide to federated optimization. arXiv preprint
arXiv:2107.06917. 2021. https://doi.org/10.48550/arXiv.2107.06917

13. Qi P, Chiaro D, Guzzo A, Ianni M, Fortino G, Piccialli F. Model
aggregation techniques in federated learning: A comprehensive
survey. Future Gener Comput Syst. 2024;150:272-293. .
https://doi.org/10.1016/j.future.2023.09.008

14. Mu X, Shen Y, Cheng K, Geng X, Fu J, Zhang T, et al. Fedproc: Prototypical
contrastive federated learning on non-iid data. Future Gener Comput
Syst. 2023;143:93-104. https://doi.org/10.1016/j.future.2023.01.019

15. T Dinh C, Tran N, Nguyen J. Personalized federated learning with
moreau envelopes. Adv Neural Inf Process Syst. 2020;33:21394-1405.

16. Noh SH. Analysis of gradient vanishing of RNNs and performance
comparison. Information. 2021;12(11):442. .
https://doi.org/10.3390/info12110442

17. Kaur H, Virmani J, �akur S. A genetic algorithm-based
metaheuristic approach to customize a computer-aided classi�cation

system for enhanced screen �lm mammograms. InU-Healthcare
Monitoring Systems; 2019. 217-259p. .
https://doi.org/10.1016/B978-0-12-815370-3.00010-4

18. Kumar A, Sodhi SS. Comparative analysis of gaussian �lter, median
�lters and denoise autoenocoder. In2020 7th international conference
on computing for sustainable global development (INDIACom); 2020.
45-51p. https://doi.org/10.23919/INDIACom49435.2020.9083712

19. Li L, Zhu J, Sun MT. Deep learning based method for pruning deep
neural networks. In2019 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW); 2019. 312-317p.
https://doi.org/10.1109/ICMEW.2019.00-68

20. Pasandi MM, Hajabdollahi M, Karimi N, Samavi S. Modeling of pruning
techniques for deep neural networks simpli�cation. arXiv preprint
arXiv:2001.04062. 2020. https://doi.org/10.48550/arXiv.2001.04062

21. Sharma V. A study on data scaling methods for machine learning. Int J
Glob Acad Sci Res. 2022;1(1):31-42. https://doi.org/10.55938/ijgasr.v1i1.4

22. Mu X, Pavel AB, Kon M. Di�erentiation and integration of machine
learning feature vectors. In2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA);2016. 611-616p.

J. Mach. Learn. Appl., 2025, 1, 17-24 © Reseapro Journals 2025
https://doi.org/10.61577/jmla.2025.100005

JOURNAL OF MACHINE LEARNING AND APPLICATIONS
2025, VOL. 1, ISSUE 1

24

